# A Haar-Rado type theorem for minimizers in Sobolev spaces

ESAIM: Control, Optimisation and Calculus of Variations (2011)

- Volume: 17, Issue: 4, page 1133-1143
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topMariconda, Carlo, and Treu, Giulia. "A Haar-Rado type theorem for minimizers in Sobolev spaces." ESAIM: Control, Optimisation and Calculus of Variations 17.4 (2011): 1133-1143. <http://eudml.org/doc/276330>.

@article{Mariconda2011,

abstract = {
Let $u\in\phi+ W_0^\{1,1\}(\Omega)$ be a minimum for $\[I(v)=\int_\{\Omega\}g(x,v(x))+f(\nabla v(x))\,\{\rm d\}x\]$
where
f is convex, $v\mapsto g(x,v)$
is convex for a.e. x.
We prove that u shares the same modulus of continuity of ϕ
whenever Ω is sufficiently regular, the right derivative of
g satisfies a suitable monotonicity assumption and the following
inequality holds
$\forall \gamma\in\partial\Omega\qquad |u(x)-\phi(\gamma)|\le
\omega(|x-\gamma|) \quad\text\{a.e. \}x\in\Omega.$
This result generalizes the classical Haar-Rado theorem for
Lipschitz functions.
},

author = {Mariconda, Carlo, Treu, Giulia},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Hölder; regularity; Lipschitz; Hölder functions; Lipschitz functions},

language = {eng},

month = {11},

number = {4},

pages = {1133-1143},

publisher = {EDP Sciences},

title = {A Haar-Rado type theorem for minimizers in Sobolev spaces},

url = {http://eudml.org/doc/276330},

volume = {17},

year = {2011},

}

TY - JOUR

AU - Mariconda, Carlo

AU - Treu, Giulia

TI - A Haar-Rado type theorem for minimizers in Sobolev spaces

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2011/11//

PB - EDP Sciences

VL - 17

IS - 4

SP - 1133

EP - 1143

AB -
Let $u\in\phi+ W_0^{1,1}(\Omega)$ be a minimum for $\[I(v)=\int_{\Omega}g(x,v(x))+f(\nabla v(x))\,{\rm d}x\]$
where
f is convex, $v\mapsto g(x,v)$
is convex for a.e. x.
We prove that u shares the same modulus of continuity of ϕ
whenever Ω is sufficiently regular, the right derivative of
g satisfies a suitable monotonicity assumption and the following
inequality holds
$\forall \gamma\in\partial\Omega\qquad |u(x)-\phi(\gamma)|\le
\omega(|x-\gamma|) \quad\text{a.e. }x\in\Omega.$
This result generalizes the classical Haar-Rado theorem for
Lipschitz functions.

LA - eng

KW - Hölder; regularity; Lipschitz; Hölder functions; Lipschitz functions

UR - http://eudml.org/doc/276330

ER -

## References

top- H. Brezis, Analyse fonctionnelle : théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], Masson, Paris (1983).
- H. Brezis and M. Sibony, Équivalence de deux inéquations variationnelles et applications. Arch. Rational Mech. Anal.41 (1971) 254–265.
- A. Cellina, On the bounded slope condition and the validity of the Euler Lagrange equation. SIAM J. Control Optim.40 (2002) 1270–1279.
- A. Cellina, Comparison results and estimates on the gradient without strict convexity. SIAM J. Control Optim.46 (2007) 738–749.
- F. Clarke, Continuity of solutions to a basic problem in the calculus of variations. Ann. Sc. Norm. Super. Pisa Cl. Sci.4 (2005) 511–530.
- L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press, Boca Raton (1992).
- M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)] 2. Edizioni della Normale, Pisa (2005).
- P. Hartman, On the bounded slope condition. Pacific J. Math.18 (1966) 495–511.
- P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations. Acta Math.115 (1966) 271–310.
- C. Mariconda and G. Treu, Lipschitz regularity for minima without strict convexity of the Lagrangian. J. Differ. Equ.243 (2007) 388–413.
- C. Mariconda and G. Treu, Local Lipschitz regularity of minima for a scalar problem of the calculus of variations. Commun. Contemp. Math.10 (2008) 1129–1149.
- C. Mariconda and G. Treu, Hölder regularity for a classical problem of the calculus of variations. Adv. Calc. Var.2 (2009) 311–320.
- M. Miranda, Un teorema di esistenza e unicità per il problema dell'area minima in n variabili. Ann. Scuola Norm. Sup. Pisa19 (1965) 233–249.
- G. Treu and M. Vornicescu, On the equivalence of two variational problems. Calc. Var. Partial Differential Equations11 (2000) 307–319.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.