# A Hölder infinity Laplacian

Antonin Chambolle; Erik Lindgren; Régis Monneau

ESAIM: Control, Optimisation and Calculus of Variations (2012)

- Volume: 18, Issue: 3, page 799-835
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topChambolle, Antonin, Lindgren, Erik, and Monneau, Régis. "A Hölder infinity Laplacian." ESAIM: Control, Optimisation and Calculus of Variations 18.3 (2012): 799-835. <http://eudml.org/doc/276367>.

@article{Chambolle2012,

abstract = {In this paper we study the limit as p → ∞ of minimizers of the
fractional Ws,p-norms. In particular, we
prove that the limit satisfies a non-local and non-linear equation. We also prove the
existence and uniqueness of solutions of the equation. Furthermore, we prove the existence
of solutions in general for the corresponding inhomogeneous equation. By making strong use
of the barriers in this construction, we obtain some regularity results. },

author = {Chambolle, Antonin, Lindgren, Erik, Monneau, Régis},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Lipschitz extensions; Hölder extensions; infinity Laplacian; non-local and non-linear equations; viscosity solutions},

language = {eng},

month = {11},

number = {3},

pages = {799-835},

publisher = {EDP Sciences},

title = {A Hölder infinity Laplacian},

url = {http://eudml.org/doc/276367},

volume = {18},

year = {2012},

}

TY - JOUR

AU - Chambolle, Antonin

AU - Lindgren, Erik

AU - Monneau, Régis

TI - A Hölder infinity Laplacian

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2012/11//

PB - EDP Sciences

VL - 18

IS - 3

SP - 799

EP - 835

AB - In this paper we study the limit as p → ∞ of minimizers of the
fractional Ws,p-norms. In particular, we
prove that the limit satisfies a non-local and non-linear equation. We also prove the
existence and uniqueness of solutions of the equation. Furthermore, we prove the existence
of solutions in general for the corresponding inhomogeneous equation. By making strong use
of the barriers in this construction, we obtain some regularity results.

LA - eng

KW - Lipschitz extensions; Hölder extensions; infinity Laplacian; non-local and non-linear equations; viscosity solutions

UR - http://eudml.org/doc/276367

ER -

## References

top- G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat.6 (1967) 551–561.
- G. Aronsson, On certain singular solutions of the partial differential equation u2xuxx + 2uxuyuxy + u2yuyy = 0. Manuscr. Math.47 (1984) 133–151.
- G. Aronsson, M.G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. (N.S.)41 (2004) 439–505.
- G. Barles, E. Chasseigne and C. Imbert, On the Dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J.57 (2008) 213–246.
- T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits asp → ∞ of Δpup = f and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino (1989), No. Special Issue (1991) 15–68, Some topics in nonlinear PDEs, Turin (1989).
- C. Bjorland, L. Caffarelli and A. Figalli, Non-Local Tug-of-War and the Infinity Fractional Laplacian. Comm. Pure Appl. Math. (2011).
- L.A. Caffarelli and A. Córdoba, An elementary regularity theory of minimal surfaces. Differential Integral Equations6 (1993) 1–13.
- V. Caselles, J.-M. Morel and C. Sbert, An axiomatic approach to image interpolation. IEEE Trans. Image Process.7 (1998) 376–386.
- M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.)27 (1992) 1–67.
- E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. preprint arXiv:1104.4345 (2011)
- H. Lebesgue, Sur le problème de Dirichlet. Rend. Circ. Mat. Palermo24 (1907) 371–402.
- G. Lu and P. Wang, Inhomogeneous infinity Laplace equation. Adv. Math.217 (2008) 1838–1868.
- E.J. McShane, Extension of range of functions. Bull. Am. Math. Soc.40 (1934) 837–842.
- F. Memoli, J.-M. Sapiro and P. Thompson, Brain and surface warping via minimizing lipschitz extensions. IMA Preprint Series 2092 (2006).
- K. Murota, Discrete convex analysis. SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2003).
- A.M. Oberman, An explicit solution of the Lipschitz extension problem. Proc. Am. Math. Soc.136 (2008) 4329–4338.
- H. Whitney, Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc.36 (1934) 63–89.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.