Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation
ESAIM: Mathematical Modelling and Numerical Analysis (2012)
- Volume: 46, Issue: 6, page 1421-1445
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- F.P. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen and E. Michielssen, A multiplicative Calderon preconditioner for the electric field integral equation. IEEE Trans. Antennas Propag.56 (2008) 2398–2412.
- H. Bagci, F.P. Andriulli, K. Coolst, F. Olyslager and E. Michielssen, A Calderón multiplicative preconditioner for the combined field integral equation. IEEE Trans. Antennas Propag.57 (2009) 3387–3392.
- A. Bendali, Numerical analysis of the exterior boundary value problem for time harmonic Maxwell equations by a boundary finite element method. Part 2 : The discrete problem. Math. Comput.43 (1984) 47–68.
- A. Bendali, M.B. Fares and J. Gay, A boundary-element solution of the Leontovitch problem. IEEE Trans. Antennas Propag.47 (1999) 1597–1605.
- Y. Boubendir, A. Bendali and M.B. Fares, Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method. Int. J. Numer. Methods Eng.73 (2008) 1624–1650.
- A. Buffa, Remarks on the discretization of some noncoercive operator with applications to the heterogeneous Maxwell equations. SIAM J. Numer. Anal.43 (2005) 1–18.
- A. Buffa and S.H. Christiansen, A dual finite element complex on the barycentric refinement. Math. Comput.76 (2007) 1743–1769.
- A. Buffa and P. CiarletJr., On traces for functional spaces related to Maxwell’s equations I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci.24 (2001) 9–30.
- A. Buffa and P. CiarletJr., On traces for functional spaces related to Maxwell’s equations II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci.24 (2001) 31–48.
- A. Buffa and R. Hiptmair, Galerkin boundary element methods for electromagnetic scattering, in Topics in computational wave propagation. Lect. Notes Comput. Sci. Eng.31 (2003) 83–124.
- A. Buffa, M. Costabel and C. Schwab, Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math.92 (2002) 679–710.
- A. Buffa, M. Costabel and D. Sheen, On traces for H(curl,Ω) in Lipschitz domains. J. Math. Anal. Appl.276 (2002) 845–867.
- A. Buffa, R. Hiptmair, T. von Petersdorff and C. Schwab, Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math.95 (2003) 459–485.
- Y. Chang and R. Harrington, A surface formulation or characteristic modes of material bodies. IEEE Trans. Antennas Propag.25 (1977) 789–795.
- S.H. Christiansen, Discrete Fredholm properties and convergence estimates for the electric field integral equation. Math. Comput.73 (2004) 143–167.
- S.H. Christiansen and J.-C. Nédélec, Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l’acoustique. C. R. Acad. Sci. Paris, Sér. I Math.330 (2000) 617–622.
- S.H. Christiansen and J.-C. Nédélec, A preconditioner for the electric field integral equation based on Calderón formulas. SIAM J. Numer. Anal.40 (2002) 1100–1135.
- X. Claeys, A single trace integral formulation of the second kind for acoustic scattering. Seminar of Applied Mathematics, ETH Zürich, Technical Report 2011-14. Submitted to J. Appl. Math. (2011).
- X. Claeys and R. Hiptmair, Boundary integral formulation of the first kind for acoustic scattering by composite structures. Report 2011-45, SAM, ETH Zürich (2011)
- D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd edition. Appl. Math. Sci.93 (1998).
- K. Coolst, F.P. Andriulli and F. Olyslager, A Calderón, preconditioned PMCHWT equation, in Proc. of the International Conference on Electromagnetics in Advanced Applications, ICEAA’09. Torino, Italy (2009) 521–524.
- M. Costabel, Boundary integral operators on Lipschitz domains : elementary results. SIAM J. Math. Anal.19 (1988) 613–626.
- R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer.11 (2002) 237–339.
- R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering. SIAM J. Numer. Anal.41 (2003) 919–944.
- R. Hiptmair, Operator preconditioning. Comput. Math. Appl.52 (2006) 699–706.
- R. Hiptmair and C. Jerez-Hanckes, Multiple traces boundary integral formulation for Helmholtz transmission problems. SAM, ETH Zürich, Report 2010-35 (2010).
- R. Hiptmair and C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal.40 (2002) 66–86.
- G.C. Hsiao, O. Steinbach and W.L. Wendland, Domain decomposition methods via boundary integral equations, Numerical Analysis VI, Ordinary differential equations and integral equations. J. Comput. Appl. Math.125 (2000) 521–537.
- S. Jäärvenpä, S.P. Kiminki and P. Ylä-Oijala, Calderon preconditioned surface integral equations for composite objects with junctions. IEEE Trans. Antennas Propag.59 (2011) 546–554.
- U. Langer and O. Steinbach, Boundary element tearing and interconnecting methods. Computing71 (2003) 205–228.
- W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000).
- E. Miller and A. Poggio, Computer Techniques for Electromagnetics, in Integral equation solution of three-dimensional scattering problems, Chapter 4, Pergamon, New York (1973) 159–263.
- S.M. Rao, D.R. Wilton and A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag.30 (1986) 409–418.
- S.A. Sauter and C. Schwab, Boundary element methods, Springer Series in Comput. Math. 39 (2011).
- O. Steinbach and W.L. Wendland, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math9 (1998) 191–216.
- O. Steinbach and M. Windisch, Modified combined field integral equations for electromagnetic scattering. SIAM J. Numer. Anal.47 (2009) 1149–1167.
- M.B. Stephanson and J.-F. Lee, Preconditioned electric field integral equation using Calderon identities and dual loop/star basis functions. IEEE Trans. Antennas Propag.57 (2009) 1274–1279.
- T. von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci.11 (1989) 185–213.
- M. Windisch, Boundary element tearing and interconnecting methods for acoustic and electromagnetic scattering. Ph.D. thesis, Graz University of Technology (2010).
- T.-K. Wu and L.-L. Tsai, Scattering from arbitrarily-shaped lossy di-electric bodies of revolution. Radio Sci.12 (1977) 709–718.
- S. Yan, J.-M. Jin and Z.-P. Nie, A comparative study of Calderón preconditioners for PMCHWT equations. IEEE Trans. Antennas Propag.58 (2010) 2375–2383.