Finite element approximations of the three dimensional Monge-Ampère equation
Susanne Cecelia Brenner; Michael Neilan
ESAIM: Mathematical Modelling and Numerical Analysis (2012)
- Volume: 46, Issue: 5, page 979-1001
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBrenner, Susanne Cecelia, and Neilan, Michael. "Finite element approximations of the three dimensional Monge-Ampère equation." ESAIM: Mathematical Modelling and Numerical Analysis 46.5 (2012): 979-1001. <http://eudml.org/doc/276379>.
@article{Brenner2012,
abstract = {In this paper, we construct and analyze finite element methods for the three dimensional
Monge-Ampère equation. We derive methods using the Lagrange finite element space such that
the resulting discrete linearizations are symmetric and stable. With this in hand, we then
prove the well-posedness of the method, as well as derive quasi-optimal error estimates.
We also present some numerical experiments that back up the theoretical findings.},
author = {Brenner, Susanne Cecelia, Neilan, Michael},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Monge-Ampère equation; three dimensions; finite element method; convergence analysis; finite element; Lagrange finite element space; well-posedness; numerical results},
language = {eng},
month = {2},
number = {5},
pages = {979-1001},
publisher = {EDP Sciences},
title = {Finite element approximations of the three dimensional Monge-Ampère equation},
url = {http://eudml.org/doc/276379},
volume = {46},
year = {2012},
}
TY - JOUR
AU - Brenner, Susanne Cecelia
AU - Neilan, Michael
TI - Finite element approximations of the three dimensional Monge-Ampère equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/2//
PB - EDP Sciences
VL - 46
IS - 5
SP - 979
EP - 1001
AB - In this paper, we construct and analyze finite element methods for the three dimensional
Monge-Ampère equation. We derive methods using the Lagrange finite element space such that
the resulting discrete linearizations are symmetric and stable. With this in hand, we then
prove the well-posedness of the method, as well as derive quasi-optimal error estimates.
We also present some numerical experiments that back up the theoretical findings.
LA - eng
KW - Monge-Ampère equation; three dimensions; finite element method; convergence analysis; finite element; Lagrange finite element space; well-posedness; numerical results
UR - http://eudml.org/doc/276379
ER -
References
top- G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equtions. Asymptotic Anal.4 (1991) 271–283.
- C. Bernardi, Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal.26 (1989) 1212–1240.
- K. Böhmer, On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal.46 (2008) 1212–1249.
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3th edition. Springer (2008).
- S.C. Brenner, T. Gudi, M. Neilan and L.-Y. Sung, 𝒞0 penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comput.80 (2011) 1979–1995.
- L.A. Caffarelli and C.E. Gutiérrez, Properties of the solutions of the linearized Monge-Ampère equation. Amer. J. Math.119 (1997) 423–465.
- L.A. Caffarelli and M. Milman, Monge-Ampère Equation : Applications to Geometry and Optimization. Amer. Math. Soc. Providence, RI (1999).
- L.A. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation. Comm. Pure Appl. Math.37 (1984) 369–402.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
- M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc.27 (1992) 1–67.
- E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Methods Appl. Mech. Engrg.195 (2006) 1344–1386.
- G.L. Delzanno, L. Chacón, J.M. Finn, Y. Chung and G. Lapenta, An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization. J. Comput. Phys.227 (2008) 9841–9864.
- L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics. Providence, RI. Amer. Math. Soc.19 (1998).
- X. Feng and M. Neilan, Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations. J. Sci. Comput.38 (2009) 74–98.
- X. Feng and M. Neilan, Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal.47 (2009) 1226–1250.
- B.D. Froese and A.M. Oberman, Convergent finite difference solvers for viscosity solutions of the ellptic Monge-Ampère equation in dimensions two and higher. SIAM J. Numer. Anal.49 (2011) 1692–1714.
- B.D. Froese and A.M. Oberman, Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation. J. Comput. Phys.230 (2011) 818–834.
- D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (2001).
- P. Grisvard, Elliptic Problems on Nonsmooth Domains. Pitman Publishing Inc. (1985).
- C.E. Gutiérrez, The Monge-Ampère Equation, Progress in Nonlinear Differential Equations and Their Applications44. Birkhauser, Boston, MA (2001).
- T. Muir, A Treatise on the Theory of Determinants. Dover Publications Inc., New York (1960).
- M. Neilan, A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation. Numer. Math.115 (2010) 371–394.
- M. Neilan, A unified analysis of some finite element methods for the Monge-Ampère equation. Submitted.
- J.A. Nitsche, Über ein Variationspirinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unteworfen sind. Abh. Math. Sem. Univ. Hamburg36 (1971) 9–15.
- A.M. Oberman, Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B10 (2008) 221–238.
- D.C. Sorensen and R. Glowinski, A quadratically constrained minimization problem arising from PDE of Monge-Ampère type. Numer. Algorithm53 (2010) 53–66.
- N.S. Trudinger and X.-J. Wang, The Monge-Ampère equation and its geometric applications, Handbook of Geometric Analysis I. International Press (2008) 467–524.
- C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics. Providence, RI. Amer. Math. Soc.58 (2003).
- A. Ženíšek, Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theory7 (1973) 334–351.
- V. Zheligovsky, O. Podvigina and U. Frisch, The Monge-Ampère equation : various forms and numerical solutions. J. Comput. Phys.229 (2010) 5043–5061.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.