Tangency portfolios in the LP solvable portfolio selection models
Reza Keykhaei; Mohamad Taghi Jahandideh
RAIRO - Operations Research (2012)
- Volume: 46, Issue: 2, page 149-158
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- Y.P. Aneja and K.P.K. Nair, Bicriteria transportation problem. Manage. Sci.25 (1979) 73–78.
- M.S. Bazaraa, J.J. Jarvis and H.D. Sherali, Linear programming and network flows, 3rd edition. John Wiley & Sons, New York (2005).
- X.Q. Cai, K.L. Teo, X.Q. Yang, and X.Y. Zhou, Portfolio optimization under a minimax rule. Manage. Sci.46 (2000) 957–972.
- J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms I. Springer, Berlin, Heidelberg, New York (1993).
- H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manage. Sci.37 (1991) 519–529.
- T. Lust and J. Teghem, Two-phase pareto local search for the biobjective traveling salesman problem. J. Heuristics16 (2010) 475–510.
- R. Mansini, W. Ogryczak and M.G. Speranza, On LP solvable models for portfolio selection. Informatica14 (2003) 37–62.
- H.M. Markowitz, Portfolio selection. J. Financ.7 (1952) 77–91.
- R.T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk. J. Risk2 (2000) 21–41.
- W.F. Sharpe, The Sharpe ratio. J. Portfolio Manage.Fall (1994) 49–58.
- K.L. Teo and X.O. Yang, Portfolio selection problem with minimax type risk function. Ann. Oper. Res.101 (2001) 333–349.
- R.H. Tütüncü, A note on calculating the optimal risky portfolio. Finance Stochastics5 (2001) 413–417.
- S. Yitzhaki, Stochastic dominance, mean variance, and Ginis mean difference. Amer. Econ. Rev.72 (1982) 178–185.
- M.R. Young, A minimax portfolio selection rule with linear programming solution. Manage. Sci.44 (1998) 673–683.