Preserving zeros of Lie product on alternate matrices

Ajda Fošner; Bojan Kuzma

Special Matrices (2016)

  • Volume: 4, Issue: 1, page 80-100
  • ISSN: 2300-7451

Abstract

top
We study continuous maps on alternate matrices over complex field which preserve zeros of Lie product.

How to cite

top

Ajda Fošner, and Bojan Kuzma. "Preserving zeros of Lie product on alternate matrices." Special Matrices 4.1 (2016): 80-100. <http://eudml.org/doc/276404>.

@article{AjdaFošner2016,
abstract = {We study continuous maps on alternate matrices over complex field which preserve zeros of Lie product.},
author = {Ajda Fošner, Bojan Kuzma},
journal = {Special Matrices},
keywords = {Alternate matrix; Lie product; general preserver; alternate matrix},
language = {eng},
number = {1},
pages = {80-100},
title = {Preserving zeros of Lie product on alternate matrices},
url = {http://eudml.org/doc/276404},
volume = {4},
year = {2016},
}

TY - JOUR
AU - Ajda Fošner
AU - Bojan Kuzma
TI - Preserving zeros of Lie product on alternate matrices
JO - Special Matrices
PY - 2016
VL - 4
IS - 1
SP - 80
EP - 100
AB - We study continuous maps on alternate matrices over complex field which preserve zeros of Lie product.
LA - eng
KW - Alternate matrix; Lie product; general preserver; alternate matrix
UR - http://eudml.org/doc/276404
ER -

References

top
  1. [1] R. Bhatia, P. Rosenthal, How and why to solve the operator equation AX − XB = Y, Bull. London Math. Soc. 29 (1997), 1–21.  
  2. [2] M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525–546.  Zbl0791.16028
  3. [3] M. Brešar, C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math. 45 (1993), 695–708.  Zbl0794.46045
  4. [4] J.-T. Chan, C.-K. Li, N.-S. Sze, Mappings on matrices: invariance of functional values of matrix products, J. Aust. Math. Soc. 81 (2006), 165–184.  Zbl1110.15005
  5. [5] M. D. Choi, A. Jafarian, H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227–241. [WoS] Zbl0615.15004
  6. [6] J. Cui, J. Hou, Maps leaving functional values of operator products invariant, Linear Algebra Appl. 428 (2008), 1649–1663. [WoS] Zbl1146.47023
  7. [7] C.-A. Faure, An elementary proof of the fundamental theorem of projective geometry, Geom. Dedicata 90 (2002), 145–151.  Zbl0996.51001
  8. [8] P.A. Fillmore, D.A. Herrero, W.E. Longstaff, The hyperinvariant subspace lattice of a linear transformation, Linear Algebra Appl. 17 (1977), 125–132.  Zbl0359.47005
  9. [9] A. Fošner, B. Kuzma, T. Kuzma, N.-S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear Multilinear Algebra 59 (2011), 507–529. [WoS] Zbl1222.15031
  10. [10] W. Fulton, Algebraic topology: a first course, Springer, Graduate Texts in Mathematics 153, New York (1995).  Zbl0852.55001
  11. [11] F. R. Gantmacher, Applications of the theory of matrices, Interscience Publishers, Inc., New York (1959).  Zbl0085.01001
  12. [12] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge (1985).  Zbl0576.15001
  13. [13] C.-K. Li, S. Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), 591–605.  Zbl0991.15001
  14. [14] C.-K. Li, N.-K. Tsing, Linear preserver problems: A brief introduction and some special techniques, Linear Algebra Appl. 162- 164 (1992), 217–235.  
  15. [15] G. Lumer, M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32–41.  Zbl0133.07903
  16. [16] L. Molnár, Selected preserver problems on algebraic structures of linear operators and on function spaces, Springer, Lecture Notes in Mathematics 1895, Berlin (2007).  
  17. [17] L. Molnár, P. Šemrl, Nonlinear commutativity preserving maps on self-adjoint operators, Q. J. Math. 56 (2005), 589–595.  
  18. [18] M. Omladič, H. Radjavi, P. Šemrl, Preserving commutativity, J. Pure Appl. Algebra 156 (2001), 309–328.  
  19. [19] T. Petek, Additive mappings preserving commutativity, Linear Multilinear Algebra 42 (1997), 205–211. [Crossref][WoS] Zbl0895.15005
  20. [20] T. Petek, Mappings preserving spectrum and commutativity on Hermitian matrices, Linear Algebra Appl. 290 (1999), 167– 191.  Zbl0930.15027
  21. [21] T. Petek, A note on additive commutativity-preserving mappings, Publ. Math. (Debr.) 56 (2000), 53–61.  Zbl0954.15010
  22. [22] T. Petek, H. Sarria, Spectrum and commutativity preserving mappings on H2, Linear Algebra Appl. 364 (2003), 317–319.  Zbl1026.15017
  23. [23] T. Petek, P. Šemrl, Adjacency preserving maps on matrices and operators, Proc. R. Soc. Edinb. 132 (2002), 661–684.  Zbl1006.15015
  24. [24] S. Pierce et.al., A survey of linear preserver problems, Linear Multilinear Algebra 33 (1992), 1–192.  
  25. [25] P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005), 781–819.  Zbl1111.15002
  26. [26] P. Šemrl, Commutativity preserving maps, Linear Algebra Appl. 429 (2008), 1051–1070. [WoS] Zbl1195.15027
  27. [27] W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl. 14 (1976), 29–35.  Zbl0329.15005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.