Preserving zeros of Lie product on alternate matrices
Special Matrices (2016)
- Volume: 4, Issue: 1, page 80-100
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topAjda Fošner, and Bojan Kuzma. "Preserving zeros of Lie product on alternate matrices." Special Matrices 4.1 (2016): 80-100. <http://eudml.org/doc/276404>.
@article{AjdaFošner2016,
abstract = {We study continuous maps on alternate matrices over complex field which preserve zeros of Lie product.},
author = {Ajda Fošner, Bojan Kuzma},
journal = {Special Matrices},
keywords = {Alternate matrix; Lie product; general preserver; alternate matrix},
language = {eng},
number = {1},
pages = {80-100},
title = {Preserving zeros of Lie product on alternate matrices},
url = {http://eudml.org/doc/276404},
volume = {4},
year = {2016},
}
TY - JOUR
AU - Ajda Fošner
AU - Bojan Kuzma
TI - Preserving zeros of Lie product on alternate matrices
JO - Special Matrices
PY - 2016
VL - 4
IS - 1
SP - 80
EP - 100
AB - We study continuous maps on alternate matrices over complex field which preserve zeros of Lie product.
LA - eng
KW - Alternate matrix; Lie product; general preserver; alternate matrix
UR - http://eudml.org/doc/276404
ER -
References
top- [1] R. Bhatia, P. Rosenthal, How and why to solve the operator equation AX − XB = Y, Bull. London Math. Soc. 29 (1997), 1–21.
- [2] M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525–546. Zbl0791.16028
- [3] M. Brešar, C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math. 45 (1993), 695–708. Zbl0794.46045
- [4] J.-T. Chan, C.-K. Li, N.-S. Sze, Mappings on matrices: invariance of functional values of matrix products, J. Aust. Math. Soc. 81 (2006), 165–184. Zbl1110.15005
- [5] M. D. Choi, A. Jafarian, H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227–241. [WoS] Zbl0615.15004
- [6] J. Cui, J. Hou, Maps leaving functional values of operator products invariant, Linear Algebra Appl. 428 (2008), 1649–1663. [WoS] Zbl1146.47023
- [7] C.-A. Faure, An elementary proof of the fundamental theorem of projective geometry, Geom. Dedicata 90 (2002), 145–151. Zbl0996.51001
- [8] P.A. Fillmore, D.A. Herrero, W.E. Longstaff, The hyperinvariant subspace lattice of a linear transformation, Linear Algebra Appl. 17 (1977), 125–132. Zbl0359.47005
- [9] A. Fošner, B. Kuzma, T. Kuzma, N.-S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear Multilinear Algebra 59 (2011), 507–529. [WoS] Zbl1222.15031
- [10] W. Fulton, Algebraic topology: a first course, Springer, Graduate Texts in Mathematics 153, New York (1995). Zbl0852.55001
- [11] F. R. Gantmacher, Applications of the theory of matrices, Interscience Publishers, Inc., New York (1959). Zbl0085.01001
- [12] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge (1985). Zbl0576.15001
- [13] C.-K. Li, S. Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), 591–605. Zbl0991.15001
- [14] C.-K. Li, N.-K. Tsing, Linear preserver problems: A brief introduction and some special techniques, Linear Algebra Appl. 162- 164 (1992), 217–235.
- [15] G. Lumer, M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32–41. Zbl0133.07903
- [16] L. Molnár, Selected preserver problems on algebraic structures of linear operators and on function spaces, Springer, Lecture Notes in Mathematics 1895, Berlin (2007).
- [17] L. Molnár, P. Šemrl, Nonlinear commutativity preserving maps on self-adjoint operators, Q. J. Math. 56 (2005), 589–595.
- [18] M. Omladič, H. Radjavi, P. Šemrl, Preserving commutativity, J. Pure Appl. Algebra 156 (2001), 309–328.
- [19] T. Petek, Additive mappings preserving commutativity, Linear Multilinear Algebra 42 (1997), 205–211. [Crossref][WoS] Zbl0895.15005
- [20] T. Petek, Mappings preserving spectrum and commutativity on Hermitian matrices, Linear Algebra Appl. 290 (1999), 167– 191. Zbl0930.15027
- [21] T. Petek, A note on additive commutativity-preserving mappings, Publ. Math. (Debr.) 56 (2000), 53–61. Zbl0954.15010
- [22] T. Petek, H. Sarria, Spectrum and commutativity preserving mappings on H2, Linear Algebra Appl. 364 (2003), 317–319. Zbl1026.15017
- [23] T. Petek, P. Šemrl, Adjacency preserving maps on matrices and operators, Proc. R. Soc. Edinb. 132 (2002), 661–684. Zbl1006.15015
- [24] S. Pierce et.al., A survey of linear preserver problems, Linear Multilinear Algebra 33 (1992), 1–192.
- [25] P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005), 781–819. Zbl1111.15002
- [26] P. Šemrl, Commutativity preserving maps, Linear Algebra Appl. 429 (2008), 1051–1070. [WoS] Zbl1195.15027
- [27] W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl. 14 (1976), 29–35. Zbl0329.15005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.