Convergent Filter Bases

Roland Coghetto

Formalized Mathematics (2015)

  • Volume: 23, Issue: 3, page 189-203
  • ISSN: 1426-2630

Abstract

top
We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).

How to cite

top

Roland Coghetto. "Convergent Filter Bases." Formalized Mathematics 23.3 (2015): 189-203. <http://eudml.org/doc/276405>.

@article{RolandCoghetto2015,
abstract = {We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).},
author = {Roland Coghetto},
journal = {Formalized Mathematics},
keywords = {convergence; filter; filter base; Frechet filter; limit; net; sequence; Fréchet filter},
language = {eng},
number = {3},
pages = {189-203},
title = {Convergent Filter Bases},
url = {http://eudml.org/doc/276405},
volume = {23},
year = {2015},
}

TY - JOUR
AU - Roland Coghetto
TI - Convergent Filter Bases
JO - Formalized Mathematics
PY - 2015
VL - 23
IS - 3
SP - 189
EP - 203
AB - We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).
LA - eng
KW - convergence; filter; filter base; Frechet filter; limit; net; sequence; Fréchet filter
UR - http://eudml.org/doc/276405
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990. 
  3. [3] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991. 
  4. [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  5. [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  6. [6] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997. 
  7. [7] Grzegorz Bancerek. Prime ideals and filters. Formalized Mathematics, 6(2):241-247, 1997. 
  8. [8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  9. [9] Grzegorz Bancerek, Noboru Endou, and Yuji Sakai. On the characterizations of compactness. Formalized Mathematics, 9(4):733-738, 2001. 
  10. [10] Nicolas Bourbaki. General Topology: Chapters 1-4. Springer Science and Business Media, 2013. Zbl1107.54001
  11. [11] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990. 
  12. [12] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  13. [13] Czesław Bylinski. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990. 
  14. [14] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  15. [15] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  16. [16] Henri Cartan. Théorie des filtres. C. R. Acad. Sci., CCV:595-598, 1937. Zbl0017.24305
  17. [17] Marek Chmur. The lattice of natural numbers and the sublattice of it. The set of prime numbers. Formalized Mathematics, 2(4):453-459, 1991. 
  18. [18] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  19. [19] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Formalized Mathematics, 6(1):117-121, 1997. 
  20. [20] Gilbert Lee and Piotr Rudnicki. Dickson’s lemma. Formalized Mathematics, 10(1):29-37, 2002. 
  21. [21] Yatsuka Nakamura and Hisashi Ito. Basic properties and concept of selected subsequence of zero based finite sequences. Formalized Mathematics, 16(3):283-288, 2008. doi:10.2478/v10037-008-0034-y.[Crossref] 
  22. [22] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990. 
  23. [23] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  24. [24] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996. 
  25. [25] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990. 
  26. [26] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003. 
  27. [27] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213-225, 1997. 
  28. [28] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187-190, 1990. 
  29. [29] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  30. [30] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized Mathematics, 1(2):387-393, 1990. 
  31. [31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  32. [32] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001. 
  33. [33] Josef Urban. Basic facts about inaccessible and measurable cardinals. Formalized Mathematics, 9(2):323-329, 2001. 
  34. [34] Claude Wagschal. Topologie et analyse fonctionnelle. Hermann, 1995. 
  35. [35] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990. 
  36. [36] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  37. [37] Stanisław Zukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-222, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.