Polish Notation

Taneli Huuskonen

Formalized Mathematics (2015)

  • Volume: 23, Issue: 3, page 161-176
  • ISSN: 1426-2630

Abstract

top
This article is the first in a series formalizing some results in my joint work with Prof. Joanna Golinska-Pilarek ([12] and [13]) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([14]). We present some mathematical folklore about representing formulas in “Polish notation”, that is, with operators of fixed arity prepended to their arguments. This notation, which was published by Jan Łukasiewicz in [15], eliminates the need for parentheses and is generally well suited for rigorous reasoning about syntactic properties of formulas.

How to cite

top

Taneli Huuskonen. "Polish Notation." Formalized Mathematics 23.3 (2015): 161-176. <http://eudml.org/doc/276418>.

@article{TaneliHuuskonen2015,
abstract = {This article is the first in a series formalizing some results in my joint work with Prof. Joanna Golinska-Pilarek ([12] and [13]) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([14]). We present some mathematical folklore about representing formulas in “Polish notation”, that is, with operators of fixed arity prepended to their arguments. This notation, which was published by Jan Łukasiewicz in [15], eliminates the need for parentheses and is generally well suited for rigorous reasoning about syntactic properties of formulas.},
author = {Taneli Huuskonen},
journal = {Formalized Mathematics},
keywords = {Polish notation; syntax; well-formed formula},
language = {eng},
number = {3},
pages = {161-176},
title = {Polish Notation},
url = {http://eudml.org/doc/276418},
volume = {23},
year = {2015},
}

TY - JOUR
AU - Taneli Huuskonen
TI - Polish Notation
JO - Formalized Mathematics
PY - 2015
VL - 23
IS - 3
SP - 161
EP - 176
AB - This article is the first in a series formalizing some results in my joint work with Prof. Joanna Golinska-Pilarek ([12] and [13]) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([14]). We present some mathematical folklore about representing formulas in “Polish notation”, that is, with operators of fixed arity prepended to their arguments. This notation, which was published by Jan Łukasiewicz in [15], eliminates the need for parentheses and is generally well suited for rigorous reasoning about syntactic properties of formulas.
LA - eng
KW - Polish notation; syntax; well-formed formula
UR - http://eudml.org/doc/276418
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  3. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  5. [5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  6. [6] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  7. [7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990. 
  8. [8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  9. [9] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  10. [10] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  11. [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  12. [12] Joanna Golinska-Pilarek and Taneli Huuskonen. Logic of descriptions. A new approach to the foundations of mathematics and science. Studies in Logic, Grammar and Rhetoric, 40(27), 2012. Zbl06585187
  13. [13] Joanna Golinska-Pilarek and Taneli Huuskonen. Grzegorczyk’s non-Fregean logics. In Rafał Urbaniak and Gillman Payette, editors, Applications of Formal Philosophy: The Road Less Travelled, Logic, Reasoning and Argumentation. Springer, 2015. Zbl1086.03024
  14. [14] Andrzej Grzegorczyk. Filozofia logiki i formalna logika niesymplifikacyjna. Zagadnienia Naukoznawstwa, XLVII(4), 2012. In Polish. 
  15. [15] Jan Łukasiewicz. Uwagi o aksjomacie Nicoda i ‘dedukcji uogólniajacej’. In Ksiega pamiatkowa Polskiego Towarzystwa Filozoficznego, Lwów, 1931. In Polish. 
  16. [16] Andrzej Nedzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990. 
  17. [17] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990. 
  18. [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  19. [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.