Polish Notation
Formalized Mathematics (2015)
- Volume: 23, Issue: 3, page 161-176
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topTaneli Huuskonen. "Polish Notation." Formalized Mathematics 23.3 (2015): 161-176. <http://eudml.org/doc/276418>.
@article{TaneliHuuskonen2015,
abstract = {This article is the first in a series formalizing some results in my joint work with Prof. Joanna Golinska-Pilarek ([12] and [13]) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([14]). We present some mathematical folklore about representing formulas in “Polish notation”, that is, with operators of fixed arity prepended to their arguments. This notation, which was published by Jan Łukasiewicz in [15], eliminates the need for parentheses and is generally well suited for rigorous reasoning about syntactic properties of formulas.},
author = {Taneli Huuskonen},
journal = {Formalized Mathematics},
keywords = {Polish notation; syntax; well-formed formula},
language = {eng},
number = {3},
pages = {161-176},
title = {Polish Notation},
url = {http://eudml.org/doc/276418},
volume = {23},
year = {2015},
}
TY - JOUR
AU - Taneli Huuskonen
TI - Polish Notation
JO - Formalized Mathematics
PY - 2015
VL - 23
IS - 3
SP - 161
EP - 176
AB - This article is the first in a series formalizing some results in my joint work with Prof. Joanna Golinska-Pilarek ([12] and [13]) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([14]). We present some mathematical folklore about representing formulas in “Polish notation”, that is, with operators of fixed arity prepended to their arguments. This notation, which was published by Jan Łukasiewicz in [15], eliminates the need for parentheses and is generally well suited for rigorous reasoning about syntactic properties of formulas.
LA - eng
KW - Polish notation; syntax; well-formed formula
UR - http://eudml.org/doc/276418
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [6] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [9] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [10] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [12] Joanna Golinska-Pilarek and Taneli Huuskonen. Logic of descriptions. A new approach to the foundations of mathematics and science. Studies in Logic, Grammar and Rhetoric, 40(27), 2012. Zbl06585187
- [13] Joanna Golinska-Pilarek and Taneli Huuskonen. Grzegorczyk’s non-Fregean logics. In Rafał Urbaniak and Gillman Payette, editors, Applications of Formal Philosophy: The Road Less Travelled, Logic, Reasoning and Argumentation. Springer, 2015. Zbl1086.03024
- [14] Andrzej Grzegorczyk. Filozofia logiki i formalna logika niesymplifikacyjna. Zagadnienia Naukoznawstwa, XLVII(4), 2012. In Polish.
- [15] Jan Łukasiewicz. Uwagi o aksjomacie Nicoda i ‘dedukcji uogólniajacej’. In Ksiega pamiatkowa Polskiego Towarzystwa Filozoficznego, Lwów, 1931. In Polish.
- [16] Andrzej Nedzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
- [17] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.