Multiscale asymptotics for the Skeleton of the Madden-Julian Oscillation and Tropical–Extratropical Interactions

Shengqian Chen; Andrew J. Majda; Samuel N. Stechmann

Mathematics of Climate and Weather Forecasting (2015)

  • Volume: 1, Issue: 1
  • ISSN: 2353-6438

Abstract

top
Anew model is derived and analyzed for tropical–extratropical interactions involving the Madden– Julian oscillation (MJO). The model combines (i) the tropical dynamics of the MJO and equatorial baroclinic waves and (ii) the dynamics of barotropic Rossby waves with significant extratropical structure, and the combined system has a conserved energy. The method of multiscale asymptotics is applied to systematically derive a system of ordinary differential equations (ODEs) for three-wave resonant interactions. Two novel features are (i) a degenerate auxiliary problem with overdetermined equations due to a compatibility condition (meridional geostrophic balance) and (ii) cubic self-interaction terms that are not typically found in threewave resonance ODEs. Several examples illustrate applications to MJO initiation and termination, including cases of (i) the MJO, equatorial baroclinic Rossbywaves, and barotropic Rossbywaves interacting, and (ii) the MJO, baroclinic Kelvinwaves, and barotropic Rossbywaves interacting. Resonance with the Kelvinwave is not possible here if only dry variables are considered, but it occurs in the moist model here through interactions with water vapor and convective activity.

How to cite

top

Shengqian Chen, Andrew J. Majda, and Samuel N. Stechmann. "Multiscale asymptotics for the Skeleton of the Madden-Julian Oscillation and Tropical–Extratropical Interactions." Mathematics of Climate and Weather Forecasting 1.1 (2015): null. <http://eudml.org/doc/276447>.

@article{ShengqianChen2015,
abstract = {Anew model is derived and analyzed for tropical–extratropical interactions involving the Madden– Julian oscillation (MJO). The model combines (i) the tropical dynamics of the MJO and equatorial baroclinic waves and (ii) the dynamics of barotropic Rossby waves with significant extratropical structure, and the combined system has a conserved energy. The method of multiscale asymptotics is applied to systematically derive a system of ordinary differential equations (ODEs) for three-wave resonant interactions. Two novel features are (i) a degenerate auxiliary problem with overdetermined equations due to a compatibility condition (meridional geostrophic balance) and (ii) cubic self-interaction terms that are not typically found in threewave resonance ODEs. Several examples illustrate applications to MJO initiation and termination, including cases of (i) the MJO, equatorial baroclinic Rossbywaves, and barotropic Rossbywaves interacting, and (ii) the MJO, baroclinic Kelvinwaves, and barotropic Rossbywaves interacting. Resonance with the Kelvinwave is not possible here if only dry variables are considered, but it occurs in the moist model here through interactions with water vapor and convective activity.},
author = {Shengqian Chen, Andrew J. Majda, Samuel N. Stechmann},
journal = {Mathematics of Climate and Weather Forecasting},
keywords = {tropical intraseasonal variability; tropical-extratropical interactions; multiscale asymptotic analysis},
language = {eng},
number = {1},
pages = {null},
title = {Multiscale asymptotics for the Skeleton of the Madden-Julian Oscillation and Tropical–Extratropical Interactions},
url = {http://eudml.org/doc/276447},
volume = {1},
year = {2015},
}

TY - JOUR
AU - Shengqian Chen
AU - Andrew J. Majda
AU - Samuel N. Stechmann
TI - Multiscale asymptotics for the Skeleton of the Madden-Julian Oscillation and Tropical–Extratropical Interactions
JO - Mathematics of Climate and Weather Forecasting
PY - 2015
VL - 1
IS - 1
SP - null
AB - Anew model is derived and analyzed for tropical–extratropical interactions involving the Madden– Julian oscillation (MJO). The model combines (i) the tropical dynamics of the MJO and equatorial baroclinic waves and (ii) the dynamics of barotropic Rossby waves with significant extratropical structure, and the combined system has a conserved energy. The method of multiscale asymptotics is applied to systematically derive a system of ordinary differential equations (ODEs) for three-wave resonant interactions. Two novel features are (i) a degenerate auxiliary problem with overdetermined equations due to a compatibility condition (meridional geostrophic balance) and (ii) cubic self-interaction terms that are not typically found in threewave resonance ODEs. Several examples illustrate applications to MJO initiation and termination, including cases of (i) the MJO, equatorial baroclinic Rossbywaves, and barotropic Rossbywaves interacting, and (ii) the MJO, baroclinic Kelvinwaves, and barotropic Rossbywaves interacting. Resonance with the Kelvinwave is not possible here if only dry variables are considered, but it occurs in the moist model here through interactions with water vapor and convective activity.
LA - eng
KW - tropical intraseasonal variability; tropical-extratropical interactions; multiscale asymptotic analysis
UR - http://eudml.org/doc/276447
ER -

References

top
  1. [1] A. D. D. Craik. Wave Interactions and Fluid Flows. Cambridge Univ Press, Cambridge, 1985.  Zbl0581.76002
  2. [2] J. Ferguson, B. Khouider, and M. Namazi. Two-way interactions between equatorially trappedwaves and the barotropic flow. Chinese Annals of Mathematics, Series B, 30:539–568, 2010. [WoS] Zbl1261.86004
  3. [3] J. S. Frederiksen and C. S. Frederiksen. Monsoon disturbances, intraseasonal oscillations, teleconnection patterns, blocking, and storm tracks of the global atmosphere during January 1979: Linear theory. J. Atmos. Sci., 50:1349–1372, 1993. [Crossref] 
  4. [4] F.-F. Jin and B. J. Hoskins. The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52(3):307–319, February 1995. [Crossref] 
  5. [5] B. Khouider and A. J. Majda. A non-oscillatory balanced scheme for an idealized tropical climate model: Part I: Algorithm and validation. Theor. Comp. Fluid Dyn., 19(5):331–354, 2005. [Crossref] Zbl1112.76404
  6. [6] B. Khouider, A. J. Majda, and S. N. Stechmann. Climate science in the tropics: waves, vortices and PDEs. Nonlinearity, 26(1):R1–R68, 2013. [WoS][Crossref] Zbl1322.86002
  7. [7] G. N. Kiladis, M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy. Convectively coupled equatorial waves. Rev. Geophys., 47:RG2003, 2009. [WoS] 
  8. [8] W. K. M. Lau and D. E.Waliser, editors. Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin, 2012.  
  9. [9] H. Lin, G. Brunet, and J. Derome. An observed connection between the north Atlantic oscillation and the Madden-Julian oscillation. J. Clim., 22:364–380, 2009. [Crossref][WoS] 
  10. [10] R. A. Madden and P. R. Julian. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28(5):702–708, 1971. [Crossref] 
  11. [11] R. A. Madden and P. R. Julian. Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci., 29:1109–1123, September 1972. [Crossref] 
  12. [12] R. A. Madden and P. R. Julian. Observations of the 40–50-day tropical oscillation-a review. Mon. Wea. Rev., 122:814–837, 1994.  
  13. [13] A. J. Majda. Introduction to PDEs and Waves for the Atmosphere and Ocean, volume 9 of Courant Lecture Notes in Mathematics. American Mathematical Society, Providence, 2003.  Zbl1278.76004
  14. [14] A. J. Majda and J. A. Biello. The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci., 60:1809–1821, August 2003.  
  15. [15] A. J. Majda, R. R. Rosales, E. G. Tabak, and C. V. Turner. Interaction of large-scale equatorial waves and dispersion of Kelvin waves through topographic resonances. J. Atmos. Sci., 56:4118–4133, December 1999. [Crossref] 
  16. [16] A. J.Majda and M. G. Shefter. Models of stratiform instability and convectively coupled waves. J. Atmos. Sci., 58:1567–1584, 2001.  
  17. [17] A. J. Majda and S. N. Stechmann. A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66:373–392, 2009. [WoS][Crossref] 
  18. [18] A. J. Majda and S. N. Stechmann. The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106(21):8417–8422, 2009. [Crossref] 
  19. [19] A. J. Majda and S. N. Stechmann. Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci., 68:3053– 3071, 2011. [WoS] 
  20. [20] A.Matthews, B. J. Hoskins, and M.Masutani. The global response to tropical heating in theMadden-Julian oscillation during the northern winter. Q. J. R. Meteorol. Soc., 130:1991–2011, 2004.  
  21. [21] A. Matthews and G. N. Kiladis. The tropical-extratropical interaction between high-frequency transients and the Madden- Julian oscillation. Mon. Wea. Rev., 127:661–677, May 1999.  
  22. [22] J. David Neelin and Ning Zeng. A quasi-equilibrium tropical circulation model-formulation. J. Atmos. Sci., 57:1741–1766, 2000.  
  23. [23] J. Pedlosky. Geophysical Fluid Dynamics. Springer–Verlag, 2nd edition, 1987.  Zbl0713.76005
  24. [24] C. F. M. Raupp and P. L. Silva Dias. Dynamics of resonantly interacting equatorial waves. Tellus, 58(A):263–279, 2006. [Crossref] 
  25. [25] C. F. M. Raupp and P. L. Silva Dias. Resonant wave interactions in the presence of diurnally varying heat source. J. Atmos. Sci., 66:3165–3183, 2009. [WoS][Crossref] 
  26. [26] C. F. M. Raupp, E. G. Tabak, and P. Milewski. Resonant wave interactions in the equatorial waveguide. J. Atmos. Sci., 65:263– 279, 2008. [WoS] 
  27. [27] P. Ray and C. Zhang. A case study of the mechanics of extratropical influence on the initiation of theMadden-Julian oscillation . J. Atmos. Sci., 67:515–528, Feburary 2010. [WoS][Crossref] 
  28. [28] G. M. Reznik and V. Zeitlin. Resonant excitation of Rossby waves in the equatorial waveguide and their nonlinear evolution. Phys. Rev. Lett., 96(3):34502, 2006. [Crossref] 
  29. [29] G. M. Reznik and V. Zeitlin. Interaction of free Rossby waves with semi-transparent equatorial waveguide. Part 1. Wave triads. Physica D: Nonlinear Phenomena, 226(1):55–79, 2007. [WoS][Crossref] Zbl1112.76014
  30. [30] P. Ripa. On the theory of nonlinear wave-wave interactions among geophysical waves. J. Fluid Mech., 103:87–115, 1981. [Crossref] Zbl0463.76031
  31. [31] P. Ripa. Nonlinear wave–wave interactions in a one-layer reduced-gravity model on the equatorial b-plane. J. Phys. Ocean., 12(1):97–111, 1982. [Crossref] 
  32. [32] P. E. Roundy. Tropical–extratropical interactions. In W. K. M. Lau and D. E. Waliser, editors, Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin, 2011.  
  33. [33] J. P. Stachnik, D. E.Waliser, and A. J.Majda. Precursor environmental conditions associatedwith the termination of Madden– Julian oscillation events. J. Atmos. Sci., 72(5):1908–1931, 2015. [WoS][Crossref] 
  34. [34] S. N. Stechmann and A. J. Majda. Identifying the skeleton of the Madden–Julian oscillation in observational data. Mon. Wea. Rev., 143:395–416, 2015. [WoS] 
  35. [35] S. Thual, A. J. Majda, and S. N. Stechmann. Asymmetric intraseasonal events in the stochastic skeleton MJO model with seasonal cycle. Climate Dynamics, 45:603–618, 2015. [Crossref][WoS] 
  36. [36] K. M. Weickmann. Intraseasonal circulation and outgoing longwave radiation modes during northern hemisphere winter. Mon. Wea. Rev., 111:1838–1858, September 1983.  
  37. [37] K. M. Weickmann and E. Berry. The tropical Madden-Julian Oscillation and the global wind oscillation. Mon. Wea. Rev., 137:1601–1614, May 2009.  
  38. [38] K. M. Weickmann, G. R. Lussky, and Kutzback J. E. Intraseasonal (30-60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113:941–961, June 1985.  
  39. [39] C. Zhang. Madden–Julian Oscillation. Reviews of Geophysics, 43:RG2003, June 2005.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.