Factoring an odd abelian group by lacunary cyclic subsets
Discussiones Mathematicae - General Algebra and Applications (2010)
- Volume: 30, Issue: 2, page 137-146
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topSándor Szabó. "Factoring an odd abelian group by lacunary cyclic subsets." Discussiones Mathematicae - General Algebra and Applications 30.2 (2010): 137-146. <http://eudml.org/doc/276458>.
@article{SándorSzabó2010,
abstract = {It is a known result that if a finite abelian group of odd order is a direct product of lacunary cyclic subsets, then at least one of the factors must be a subgroup. The paper gives an elementary proof that does not rely on characters.},
author = {Sándor Szabó},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {factorization of finite abelian groups; periodic subsets; cyclic subsets; lacunary cyclic subsets; Hajós-Rédei theory; factorizations of finite Abelian groups},
language = {eng},
number = {2},
pages = {137-146},
title = {Factoring an odd abelian group by lacunary cyclic subsets},
url = {http://eudml.org/doc/276458},
volume = {30},
year = {2010},
}
TY - JOUR
AU - Sándor Szabó
TI - Factoring an odd abelian group by lacunary cyclic subsets
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2010
VL - 30
IS - 2
SP - 137
EP - 146
AB - It is a known result that if a finite abelian group of odd order is a direct product of lacunary cyclic subsets, then at least one of the factors must be a subgroup. The paper gives an elementary proof that does not rely on characters.
LA - eng
KW - factorization of finite abelian groups; periodic subsets; cyclic subsets; lacunary cyclic subsets; Hajós-Rédei theory; factorizations of finite Abelian groups
UR - http://eudml.org/doc/276458
ER -
References
top- [1] K. Corrádi and S. Szabó, A Hajós type result on factoring finite abelian groups by subsets, Mathematica Pannonica 5 (1994), 275-280. Zbl0831.20069
- [2] G. Hajós, Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter, Math. Zeit. 47 (1942), 427-467. doi: 10.1007/BF01180974 Zbl0025.25401
- [3] L. Rédei, Die neue Theorie der Endlichen Abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar. 16 (1965), 329-373. doi: 10.1007/BF01904843 Zbl0138.26001
- [4] A.D. Sands, A note on distorted cyclic subsets, Mathematica Pannonica 20 (2009), 123-127. Zbl1249.20049
- [5] S. Szabó and A.D. Sands, Factoring Groups into Subsets, Chapman and Hall, CRC, Taylor and Francis Group, Boca Raton 2009. Zbl1167.20030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.