On the length of rational continued fractions over
Discussiones Mathematicae - General Algebra and Applications (2015)
- Volume: 35, Issue: 2, page 131-137
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topS. Driss. "On the length of rational continued fractions over $_q(X)$." Discussiones Mathematicae - General Algebra and Applications 35.2 (2015): 131-137. <http://eudml.org/doc/276460>.
@article{S2015,
abstract = {Let $_\{q\}$ be a finite field and $A(Y) ∈ _\{q\}(X,Y)$. The aim of this paper is to prove that the length of the continued fraction expansion of $A(P);P ∈ _\{q\}[X]$, is bounded.},
author = {S. Driss},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {continued fraction; formal power series; finite field},
language = {eng},
number = {2},
pages = {131-137},
title = {On the length of rational continued fractions over $_q(X)$},
url = {http://eudml.org/doc/276460},
volume = {35},
year = {2015},
}
TY - JOUR
AU - S. Driss
TI - On the length of rational continued fractions over $_q(X)$
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2015
VL - 35
IS - 2
SP - 131
EP - 137
AB - Let $_{q}$ be a finite field and $A(Y) ∈ _{q}(X,Y)$. The aim of this paper is to prove that the length of the continued fraction expansion of $A(P);P ∈ _{q}[X]$, is bounded.
LA - eng
KW - continued fraction; formal power series; finite field
UR - http://eudml.org/doc/276460
ER -
References
top- [1] J.P. Allouche, Sur le développement en fraction continue de certaines séries formelles, C.R. Acad. Sciences 307 (1988), 631-633. Zbl0657.10035
- [2] G. Grisel, Length of the Powers of a Rational Fraction, J. Number Theory 62 (1997), 322-337. Zbl0878.11028
- [3] G. Choquet, Répartition des nombres et ensembles associés, (English summary) C.R. Acad. Sci. Paris Sér. A-B 290 13 (1980), 575-580. Zbl0436.10025
- [4] M. Hbaib and M. Jellali, On the quadratic continued fractions over , Communications in Algebra 38 (2010), 3181-3186. Zbl1219.11106
- [5] A. Lasjaunias, Diophantine approximation and continued fraction expansions of algebraic power series in positive characteristic, J. Number Theory 65 (1997), 206-225. Zbl0874.11051
- [6] M. Mendés France, Fractions continues limitées et théorie des languages, Séminaire Delange-Pisot-poitou. Théorie des nombres, 16 (1) (1971-1972), exp. no.9, 1-5.
- [7] M. Mendées France, Quelques problémes relatifs à la théorie des fractions continues limitées, Séminaire Delange-Pisot-poitou. Théorie des nombres 13 (1) (1971-1972), exp. no.2, 1-6.
- [8] M. Mendés France, Remarks and problems on finite and periodic continued fractions, Enseign. Math. 39 (1993), 249-257. Zbl0808.11007
- [9] M. Mendés France, Sur les fractions continues limités, Acta Arith. 23 (1973), 207-215.
- [10] J. Mikusinski, Sur certaines fractions continues finies, Ann. Polon. Math. (1954), 203-206. Zbl0055.04501
- [11] M. Mkaouar, Quelques propriétés métriques des fractions continues dans un corps fini, Soc. Math. Tunisie (1996), 120-130.
- [12] M. Mkaouar, Sur le développement en fraction continue des séries formelles quadratiques sur , Acta Arith. XCII. 3 (2001), 241-251.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.