Distributive lattices of t-k-Archimedean semirings

Tapas Kumar Mondal

Discussiones Mathematicae - General Algebra and Applications (2011)

  • Volume: 31, Issue: 2, page 147-158
  • ISSN: 1509-9415

Abstract

top
A semiring S in 𝕊𝕃⁺ is a t-k-Archimedean semiring if for all a,b ∈ S, b ∈ √(Sa) ∩ √(aS). Here we introduce the t-k-Archimedean semirings and characterize the semirings which are distributive lattice (chain) of t-k-Archimedean semirings. A semiring S is a distributive lattice of t-k-Archimedean semirings if and only if √B is a k-ideal, and S is a chain of t-k-Archimedean semirings if and only if √B is a completely prime k-ideal, for every k-bi-ideal B of S.

How to cite

top

Tapas Kumar Mondal. "Distributive lattices of t-k-Archimedean semirings." Discussiones Mathematicae - General Algebra and Applications 31.2 (2011): 147-158. <http://eudml.org/doc/276484>.

@article{TapasKumarMondal2011,
abstract = {A semiring S in 𝕊𝕃⁺ is a t-k-Archimedean semiring if for all a,b ∈ S, b ∈ √(Sa) ∩ √(aS). Here we introduce the t-k-Archimedean semirings and characterize the semirings which are distributive lattice (chain) of t-k-Archimedean semirings. A semiring S is a distributive lattice of t-k-Archimedean semirings if and only if √B is a k-ideal, and S is a chain of t-k-Archimedean semirings if and only if √B is a completely prime k-ideal, for every k-bi-ideal B of S.},
author = {Tapas Kumar Mondal},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {k-radical; t-k-Archimedean semiring; completely prime k-ideal; semiprimary k-ideal; -radical, --Archimedean semirings; completely prime -ideals; semiprimary -ideals},
language = {eng},
number = {2},
pages = {147-158},
title = {Distributive lattices of t-k-Archimedean semirings},
url = {http://eudml.org/doc/276484},
volume = {31},
year = {2011},
}

TY - JOUR
AU - Tapas Kumar Mondal
TI - Distributive lattices of t-k-Archimedean semirings
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2011
VL - 31
IS - 2
SP - 147
EP - 158
AB - A semiring S in 𝕊𝕃⁺ is a t-k-Archimedean semiring if for all a,b ∈ S, b ∈ √(Sa) ∩ √(aS). Here we introduce the t-k-Archimedean semirings and characterize the semirings which are distributive lattice (chain) of t-k-Archimedean semirings. A semiring S is a distributive lattice of t-k-Archimedean semirings if and only if √B is a k-ideal, and S is a chain of t-k-Archimedean semirings if and only if √B is a completely prime k-ideal, for every k-bi-ideal B of S.
LA - eng
KW - k-radical; t-k-Archimedean semiring; completely prime k-ideal; semiprimary k-ideal; -radical, --Archimedean semirings; completely prime -ideals; semiprimary -ideals
UR - http://eudml.org/doc/276484
ER -

References

top
  1. [1] A.K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, accepted for publication in Discuss. Math. General Algebra and Applications 31 (2011), 5-25. Zbl1254.16040
  2. [2] A.K. Bhuniya and T.K. Mondal, Distributive lattice decompositions of semirings with a semilattice additive reduct, Semigroup Forum 80 (2010), 293-301. doi: 10.1007/s00233-009-9205-6 Zbl1205.16039
  3. [3] S. Bogdanovic and M. Ciric, Semilattice of Archimedean semigroups and completely π-regular semigroups I (survey article), Filomat(nis) 7 (1993), 1-40. Zbl0848.20052
  4. [4] S. Bogdanovic and M. Ciric, Chains of Archimedean semigroups (Semiprimary semigroups), Indian J. Pure and Appl. Math. 25 (1994), 229-235. Zbl0801.20045
  5. [5] M. Ciric and S. Bogdanovic, Semilattice decompositions of semigroups, Semigroup Forum (1996), 119-132. doi: 10.1007/BF02574089 
  6. [6] A.H. Clifford, Semigroups admitting relative inverses, Annals of Math. 42 (1941), 1037-1049. doi: 10.2307/1968781 Zbl0063.00920
  7. [7] F. Kmet, Radicals and their left ideal analogues in a semigroup, Math. Slovaca 38 (1988), 139-145. Zbl0643.20042
  8. [8] M. Petrich, The maximal semilattice decomposition of a semigroup, Math. Zeitschr. 85 (1964), 68-82. doi: 10.1007/BF01114879 Zbl0124.25801
  9. [9] M.S. Putcha, Semilattice decomposition of semigroups, Semigroup Forum 6 (1973), 12-34. doi: 10.1007/BF02389104 
  10. [10] T. Tamura, Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup, Proc. Japan Acad. 40 (1964), 777-780. doi: 10.3792/pja/1195522562 Zbl0135.04001
  11. [11] T. Tamura, On Putcha's theorem concerning semilattice of archimedean semigroups, Semigroup Forum 4 (1972), 83-86. doi: 10.1007/BF02570773 Zbl0256.20075
  12. [12] T. Tamura, Note on the greatest semilattice decomposition of semigroups, Semigroup Forum 4 (1972), 255-261. doi: 10.1007/BF02570795 Zbl0261.20058
  13. [13] T. Tamura and N. Kimura, On decomposition of a commutative semigroup, Kodai Math. Sem. Rep. 4 (1954), 109-112. doi: 10.2996/kmj/1138843534 Zbl0058.01503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.