Phase retrieval using random cubatures and fusion frames of positive semidefinite matrices

Martin Ehler; Manuel Gräf; Franz J. Király

Waves, Wavelets and Fractals (2015)

  • Volume: 1, Issue: 1
  • ISSN: 2449-5557

Abstract

top
As a generalization of the standard phase retrieval problem,we seek to reconstruct symmetric rank- 1 matrices from inner products with subclasses of positive semidefinite matrices. For such subclasses, we introduce random cubatures for spaces of multivariate polynomials based on moment conditions. The inner products with samples from sufficiently strong random cubatures allow the reconstruction of symmetric rank- 1 matrices with a decent probability by solving the feasibility problem of a semidefinite program.

How to cite

top

Martin Ehler, Manuel Gräf, and Franz J. Király. "Phase retrieval using random cubatures and fusion frames of positive semidefinite matrices." Waves, Wavelets and Fractals 1.1 (2015): null. <http://eudml.org/doc/276543>.

@article{MartinEhler2015,
abstract = {As a generalization of the standard phase retrieval problem,we seek to reconstruct symmetric rank- 1 matrices from inner products with subclasses of positive semidefinite matrices. For such subclasses, we introduce random cubatures for spaces of multivariate polynomials based on moment conditions. The inner products with samples from sufficiently strong random cubatures allow the reconstruction of symmetric rank- 1 matrices with a decent probability by solving the feasibility problem of a semidefinite program.},
author = {Martin Ehler, Manuel Gräf, Franz J. Király},
journal = {Waves, Wavelets and Fractals},
language = {eng},
number = {1},
pages = {null},
title = {Phase retrieval using random cubatures and fusion frames of positive semidefinite matrices},
url = {http://eudml.org/doc/276543},
volume = {1},
year = {2015},
}

TY - JOUR
AU - Martin Ehler
AU - Manuel Gräf
AU - Franz J. Király
TI - Phase retrieval using random cubatures and fusion frames of positive semidefinite matrices
JO - Waves, Wavelets and Fractals
PY - 2015
VL - 1
IS - 1
SP - null
AB - As a generalization of the standard phase retrieval problem,we seek to reconstruct symmetric rank- 1 matrices from inner products with subclasses of positive semidefinite matrices. For such subclasses, we introduce random cubatures for spaces of multivariate polynomials based on moment conditions. The inner products with samples from sufficiently strong random cubatures allow the reconstruction of symmetric rank- 1 matrices with a decent probability by solving the feasibility problem of a semidefinite program.
LA - eng
UR - http://eudml.org/doc/276543
ER -

References

top
  1. [1] C. Bachoc and M. Ehler, Tight p-fusion frames, Appl. Comput. Harmon. Anal. 35 (2013), no. 1, 1–15. [Crossref][WoS] Zbl1293.42031
  2. [2] C. Bachoc and M. Ehler, Signal reconstruction from the magnitude of subspace components, IEEE Trans. Inform. Theory 61 (2015), no. 7, 1–13. [WoS][Crossref] 
  3. [3] R. Balan, Stability of phase retrievable frames, arXiv:1308.5465v1 (2013).  
  4. [4] R. Balan, P. Casazza, and D. Edidin, On signal reconstruction without phase, Appl. Comput. Harmon. Anal 20 (2006), 345– 356. [Crossref] Zbl1090.94006
  5. [5] A. S. Bandeira, J. Cahill, D. G. Mixon, and A. A. Nelson, Saving phase: Injectivity and stability for phase retrieval, Appl. Comput. Harmon. Anal. 37 (2014), no. 1, 106–125. [Crossref][WoS] Zbl1305.90330
  6. [6] F. Barthe, F. Gamboa, L.-V. Lozada-Chang, and A. Rouault, Generalized Dirichlet distributions on the ball and moments, Alea 7 (2010), 319–340.  Zbl1276.30051
  7. [7] B. Bhatia, Matrix analysis, Springer, New York, 1996.  Zbl0863.15001
  8. [8] B. G. Bodmann and N. Hammen, Stable phase retrieval with low-redundancy frames, arXiv:1302.5487v1 (2013). [WoS] Zbl1316.42035
  9. [9] A. Bondarenko, D. Radchenko, and M. Viazovska, Optimal asymptotic bounds for spherical designs, arXiv:1009.4407v3 (2011).  Zbl1270.05026
  10. [10] A. V. Bondarenko, D. V. Radchenko, and M. S. Viazovska, On optimal asymptotic bounds for spherical designs, arXiv:1009.4407v1 (2010).  Zbl1270.05026
  11. [11] J. Cahill, P. G. Casazza, J. Peterson, and L. Woodland, Phase retrieval by projections, arXiv:1305.6226v3 (2013).  Zbl06632093
  12. [12] E. J. Candès, Y. Eldar, T. Strohmer, and V. Voroninski, Phase retrieval via matrix completion, arXiv:1109.0573v2 (2011).  Zbl1344.49057
  13. [13] E. J. Candès and X. Li., Solving quadratic equations via PhaseLift when there are about as many equations as unknowns, Foundations of Computational Mathematics 14 (2014), 1017–1026. [Crossref][WoS] Zbl1312.90054
  14. [14] E. J. Candès, T. Strohmer, and V. Voroninski, PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming, Communications on Pure and Applied Mathematics, DOI:10.1002/cpa.21432 66 (2013), no. 8, 1241– 1274. [WoS][Crossref] Zbl1335.94013
  15. [15] Y. Chikuse, Statistics on special manifolds, Lecture Notes in Statistics, Springer, New York, 2003.  Zbl1026.62051
  16. [16] P. de la Harpe and C. Pache, Cubature formulas, geometrical designs, reproducing kernels, and Markov operators, Infinite groups: geometric, combinatorial and dynamical aspects (Basel), vol. 248, Birkhäuser, 2005, pp. 219–267.  Zbl1124.05019
  17. [17] L. Demanet and P. Hand, Stable optimizationless recovery from phaseless linear measurements, J. Fourier Anal. Appl. 20 (2014), 199–221. [Crossref][WoS] Zbl1330.90069
  18. [18] M. Ehler, Random tight frames, J. Fourier Anal. Appl. 18 (2012), no. 1, 1–20. [Crossref] Zbl1247.42026
  19. [19] M. Ehler and M. Gräf, Cubatures and designs in unions of Grassmann spaces, arXiv (2014).  
  20. [20] M. Ehler and S. Kunis, Phase retrieval using time and Fourier magnitude measurements, 10th International Conference on Sampling Theory and Applications, 2013.  
  21. [21] V. Elser and R. P. Millane, Reconstruction of an object from its symmetry-averaged diffraction pattern, Acta Crystallographica Section A 64 (2008), no. 2, 273–279. [WoS] 
  22. [22] J. R. Fienup, Phase retrieval algorithms: a comparison, Applied Optics 21 (1982), no. 15, 2758–2769. [Crossref] 
  23. [23] F. Filbir and H. N. Mhaskar, A quadrature formula for diffusion polynomials corresponding to a generalized heat kernel, J. Fourier Anal. Appl. 16 (2010), no. 5, 629–657. [Crossref][WoS] Zbl1204.41005
  24. [24] R.W. Gerchberg andW. O. Saxton, A practical algorithm for the determination of the phase from image and diffraction plane pictures, Optik 35 (1972), no. 2, 237–246.  
  25. [25] D. Gross, Recovering low-rank matrices from few coefficients in any basis, IEEE Trans. Inform. Theory 57 (2011), 1548–1566. [WoS][Crossref] 
  26. [26] D. Gross, F. Krahmer, and R. Kueng, A partial derandomization of PhaseLift using spherical designs, J. Fourier Anal. Appl. 21 (2015), no. 2, 229–266. [WoS][Crossref] Zbl1332.90197
  27. [27] A. T. James, Distributions of matrix variates and latent roots derived from normal samples, Annals ofMathematical Statistics 35 (1964), no. 2, 475–501. [Crossref] Zbl0121.36605
  28. [28] A. T. James and A. G. Constantine, Generalized Jacobi polynomials as spherical functions of the Grassmann manifold, Proc. London Math. Soc. 29 (1974), no. 3, 174–192. [Crossref] Zbl0289.33031
  29. [29] H. König, Cubature formulas on spheres, Adv. Multivar. Approx. Math. Res. 107 (1999), 201–211.  Zbl0977.41014
  30. [30] R. Kueng, H. Rauhut, and U. Terstiege, Low rank matrix recovery from rank one measurements, arXiv:1410.6913 (2014).  
  31. [31] H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature, Math. Comp. 70 (2002), 1113–1130. [Crossref] Zbl0980.76070
  32. [32] R. J. Muirhead, Aspects of multivariate statistical theory, John Wiley & Sons, New York, 1982.  Zbl0556.62028
  33. [33] F. Philipp, Phase retrieval from 4n-4 measurements: A proof for injectivity, Proc. Appl. Math. Mech. 14 (2014), no. 833-834. [Crossref] 
  34. [34] E. Riegler and G. Tauböck, Almost lossless analog compression without phase information, in Proc. IEEE Int. Symp. Inf. Th. (Hong Kong, China), 2015, pp. 1–5.  
  35. [35] T. Strohmer and R. W. Heath, Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal. 14 (2003), no. 3, 257–275. [Crossref] Zbl1028.42020
  36. [36] J.A. Tropp, User-friendly tools for random matrices: An introduction., NIPS. 
  37. [37] J.A. Tropp„ User-friendly tail bounds for sums of random matrices, Journal Foundations of Computational Mathematics 12 (2012), no. 4, 389–434. [WoS] Zbl1259.60008
  38. [38] I. Waldspurger, A. d’Aspremont, and S. Mallat, Phase recovery, maxcut and complex semidefinite programming, arXiv:1206.0102v2 (2012).  Zbl1329.94018
  39. [39] T. Wong, Generalized Dirichlet distribution in Bayesian analysis, Appl. Math. Comput. 97 (1998), no. 2-3, 165–181. [Crossref] Zbl0945.62036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.