Properties of the generalized nonlinear least squares method applied for fitting distribution to data
Discussiones Mathematicae Probability and Statistics (2015)
- Volume: 35, Issue: 1-2, page 75-94
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P.A. Al-Baidhani and C.D. Sinclair, Comparison of methods of estimation of parameters of the Weibull distribution, Communications in Statistics - Simulation and Computation 16 (1987), 373-384. Zbl0621.62032
- [2] T.W. Anderson and D.A. Darling, Asymptotic theory of certain 'goodness of fit' criteria based on stochastic processes, Ann. Math. Statist. 23 (1952), 193-212. Zbl0048.11301
- [3] M. Benšić, Fitting distribution to data by a generalized nonlinear least squares method, Communications in Statistics - Simulation and Computation (2012), in press.
- [4] P. Billingsly, Convergence of Probability Measures (John Wiley & Sons, New York, 1968). Zbl0172.21201
- [5] J. Castillo and J. Daoudi, Estimation of the generalized Pareto distribution, Statistics and Probability Letters 79 (2009), 684-688. Zbl1156.62313
- [6] D. Jukić, M. Benšiś and R. Scitovski, On the existence of the nonlinear weighted least squares estimate for a three-parameter Weibull distribution, Computational Statistics & Data Analysis 52 (2008), 4502-4511. Zbl05565032
- [7] D. Harris and L. Matyas, Introduction to the generalized method of moment estimation, Matyas, L. (Ed.), Generalized method of moment estimation (Cambridge University Press, Cambridge, 1999), 3-30.
- [8] D. Kundu and M.Z. Raqab, Generalized Rayleigh distribution: different methods of estimations, Computational Statistics & Data Analysis 49 (2005), 187-200. Zbl05374154
- [9] D. Kundu and M.Z. Raqab, Burr Type X distribution: Revisited, J. Prob. Stat. Sci. 4 (2006), 179-193.
- [10] J.F. Lawless, Statistical Models and Methods for Lifetime Data (Wiley, New York, 1982). Zbl0541.62081
- [11] A. Luceño, Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimator, Comp. Stat. & Data Anal. 51 (2006), 904-917. Zbl1157.62399
- [12] D.N.P. Murthy, M. Bulmer and J.A. Eccleston, Weibull model selection for reliability modelling, Reliability Engineering and System Safety 86 (2004), 257-267.
- [13] D. Pollard, The minimum distance method of testing, Metrika 27 (1980), 43-70. Zbl0425.62029
- [14] H. Rinne, The Weibull Distribution. A Handbook (Chapman & Hall/CRC, Boca Raton, 2009).
- [15] G.A.F. Seber and C.J. Wild, Nonlinear Regression (John Wiley & Sons, New York, 1989). Zbl0721.62062
- [16] R.L. Smith and J.C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, Biometrika 73 (1987), 67-90.
- [17] J.G. Surles and W.J. Padgett, Inference for reliability and stress-strength for a scaled Burr Type X distribution, Lifetime Data Analysis 7 (2001), 187-200. Zbl0984.62082
- [18] F.J. Torres, Estimation of parameters of the shifted Gompertz distribution using least squares, maximum likelihood and moments methods, J. Comp. and Appl. Math. 255 (2014), 867-877. Zbl1291.62057
- [19] J. Wolfowitz, Estimation by minimum distance method, Ann. Inst. Statisti. Math. 5 (1953), 9-23. Zbl0051.37004
- [20] J. Wolfowitz, The minimum distance method, Ann. Math. Statist. 28 (1957), 75-88. Zbl0086.35403