# Polynomials of multipartitional type and inverse relations

Miloud Mihoubi; Hacène Belbachir

Discussiones Mathematicae - General Algebra and Applications (2011)

- Volume: 31, Issue: 2, page 185-199
- ISSN: 1509-9415

## Access Full Article

top## Abstract

top## How to cite

topMiloud Mihoubi, and Hacène Belbachir. "Polynomials of multipartitional type and inverse relations." Discussiones Mathematicae - General Algebra and Applications 31.2 (2011): 185-199. <http://eudml.org/doc/276555>.

@article{MiloudMihoubi2011,

abstract = {Chou, Hsu and Shiue gave some applications of Faà di Bruno's formula to characterize inverse relations. Our aim is to develop some inverse relations connected to the multipartitional type polynomials involving to binomial type sequences.},

author = {Miloud Mihoubi, Hacène Belbachir},

journal = {Discussiones Mathematicae - General Algebra and Applications},

keywords = {Bell polynomials; inverses relations; polynomials of multipartitional type; binomial type sequences; polynomials of multipartitional},

language = {eng},

number = {2},

pages = {185-199},

title = {Polynomials of multipartitional type and inverse relations},

url = {http://eudml.org/doc/276555},

volume = {31},

year = {2011},

}

TY - JOUR

AU - Miloud Mihoubi

AU - Hacène Belbachir

TI - Polynomials of multipartitional type and inverse relations

JO - Discussiones Mathematicae - General Algebra and Applications

PY - 2011

VL - 31

IS - 2

SP - 185

EP - 199

AB - Chou, Hsu and Shiue gave some applications of Faà di Bruno's formula to characterize inverse relations. Our aim is to develop some inverse relations connected to the multipartitional type polynomials involving to binomial type sequences.

LA - eng

KW - Bell polynomials; inverses relations; polynomials of multipartitional type; binomial type sequences; polynomials of multipartitional

UR - http://eudml.org/doc/276555

ER -

## References

top- [1] H. Belbachir, S. Bouroubi and A. Khelladi, Connection between ordinary multinomials, generalized Fibonacci numbers, partial Bell partition polynomials and convolution powers of discrete uniform distribution, Ann. Math. Inform. 35 (2008), 21-30. Zbl1199.11047
- [2] H. Belbachir, Determining the mode for convolution powers of discrete uniform distribution, Probability in the Engineering and Informational Sciences 25 (2011), 469-475. doi: 10.1017/S0269964811000131 Zbl1241.60007
- [3] E.T. Bell, Exponential polynomials, Ann. Math. 35 (1934), 258-277. doi: 10.2307/1968431 Zbl60.0295.01
- [4] W.S. Chou, L.C. Hsu and P.J.S. Shiue, Application of Faà di Bruno's formula in characterization of inverse relations, J. Comput. Appl. Math. 190 (2006), 151-169. doi: 10.1016/j.cam.2004.12.041 Zbl1084.05009
- [5]L. Comtet, Advanced Combinatorics (Dordrecht, Netherlands, Reidel, 1974). doi: 10.1007/978-94-010-2196-8
- [6] M. Mihoubi, Bell polynomials and binomial type sequences, Discrete Math. 308 (2008), 2450-2459. doi: 10.1016/j.disc.2007.05.010 Zbl1147.05006
- [7] M. Mihoubi, Bell polynomials and inverse relations, J. Integer Seq. 13 (2010), Article 10.4.5.
- [8] M. Mihoubi, The role of binomial type sequences in determination identities for Bell polynomials, to appear in Ars Combin., Preprint available at online: http://arxiv.org/abs/0806.3468v1.
- [9] J. Riordan, Combinatorial Identities (Huntington, NewYork, 1979). Zbl0194.00502
- [10] S. Roman, The Umbral Calculus (New York: Academic Press, 1984). Zbl0536.33001

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.