Some averaging results for ordinary differential inclusions
Amel Bourada; Rahma Guen; Mustapha Lakrib; Karim Yadi
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2015)
- Volume: 35, Issue: 1, page 47-63
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topAmel Bourada, et al. "Some averaging results for ordinary differential inclusions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 35.1 (2015): 47-63. <http://eudml.org/doc/276646>.
@article{AmelBourada2015,
abstract = {We consider ordinary differential inclusions and we state and discuss some averaging results for these inclusions. Our results are proved under weaker conditions than the results in the literature.},
author = {Amel Bourada, Rahma Guen, Mustapha Lakrib, Karim Yadi},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {ordinary differential inclusions; averaging method},
language = {eng},
number = {1},
pages = {47-63},
title = {Some averaging results for ordinary differential inclusions},
url = {http://eudml.org/doc/276646},
volume = {35},
year = {2015},
}
TY - JOUR
AU - Amel Bourada
AU - Rahma Guen
AU - Mustapha Lakrib
AU - Karim Yadi
TI - Some averaging results for ordinary differential inclusions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2015
VL - 35
IS - 1
SP - 47
EP - 63
AB - We consider ordinary differential inclusions and we state and discuss some averaging results for these inclusions. Our results are proved under weaker conditions than the results in the literature.
LA - eng
KW - ordinary differential inclusions; averaging method
UR - http://eudml.org/doc/276646
ER -
References
top- [1] J.P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory (Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1984). doi: 10.1007/978-3-642-69512-4 Zbl0538.34007
- [2] K. Deimling, Multivalued Differential Equations (Walter de Gruyter, Berlin, 1992). doi: 10.1515/9783110874228 Zbl0760.34002
- [3] G. Grammel, Averaging of multivalued differential equations, Int. J. Math. Math. Sci. 25 (2003), 1615-1622. doi: 10.1155/S016117120300680X Zbl1036.34013
- [4] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers (Dordrecht-Boston-London, 1997). Zbl0887.47001
- [5] T. Janiak and E. Łuczak-Kumorek, Method of averaging for the system of functional-differential inclusions, Discuss. Math. 16 (1996), 137-151. Zbl0910.34058
- [6] T. Janiak and E. Łuczak-Kumorek, Averaging of neutral inclusions when the average value of the right-hand side does not exist, Acta Math. Viet. 25 (2000), 1-11. Zbl0954.34039
- [7] S. Klymchuk, A. Plotnikov and N. Skripnik, Overview of V.A. Plotnikov's research on averaging of differential inclusions, Physica D: Nonlinear Phenomena 241 (2012), 1932-1947. doi: 10.1016/j.physd.2011.05.004
- [8] N.A. Perestyuk, V.A. Plotnikov, A.M. Samoilenko and N.V. Skripnik, Differential equations with impulse effects: multivalued right-hand sides with discontinuities, (De Gruyter Studies in Mathematics: 40). Berlin/Boston: Walter De Gruyter GmbH&Co., 2011. Zbl1234.34002
- [9] N.V. Plotnikova, The Krasnosel'skii-Krein theorem for differential inclusions, Differ. Eq. 41 (2005), 1049-1053. doi: 10.1007/s10625-005-0248-5 Zbl1109.34306
- [10] G.V. Smirnov, Introduction to the Theory of Differential Inclusions, Graduate Studies in Math. 41, AMS, Providence, 2002.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.