Boundedness of set-valued stochastic integrals
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2015)
- Volume: 35, Issue: 2, page 197-207
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] F. Hiai, Multivalued stochastic integrals and stochastic inclusions, Division of Applied Mathematics, Research Institute of Applied Electricity, Sapporo 060 Japan (not published).
- [2] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. doi: 10.1016/0047-259X(77)90037-9 Zbl0368.60006
- [3] Sh. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis I (Kluwer Academic Publishers, Dordrecht, London, 1997). doi: 10.1007/978-1-4615-6359-4 Zbl0887.47001
- [4] E.J. Jung and J. H. Kim, On the set-valued stochastic integrals, Stoch. Anal. Appl. 21 (2) (2003), 401-418. doi: 10.1081/SAP-120019292 Zbl1049.60048
- [5] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Discuss. Math. Diff. Incl. 15 (1) (1995), 61-74.
- [6] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800. doi: 10.1080/07362999708809507 Zbl0891.93070
- [7] M. Kisielewicz, Some properties of set-valued stochastic integrals, J. Math. Anal. Appl. 388 (2012), 984-995. doi: 10.1016/j.jmaa.2011.10.050 Zbl1235.60058
- [8] M. Kisielewicz, Stochastic Differential Inclusions and Applications (Springer, New York, 2013). doi: 10.1007/978-1-4614-6756-4 Zbl1277.93002
- [9] M. Kisielewicz, Properties of generalized set-valued stochastic integrals, Discuss. Math. DICO 34 (1) (2014), 131-147. doi: 10.7151/dmdico.1155 Zbl1329.60163
- [10] M. Kisielewicz and M. Michta, Integrably bounded set-valued stochastic integrals, J. Math. Anal. Appl. (submitted to print).
- [11] M. Michta, Remarks on unboundedness of set-valued Itô stochastic integrals, J. Math. Anal. Appl 424 (2015), 651-663. doi: 10.1016/j.jmaa.2014.11.041 Zbl1303.60044