Hybrid fractional integro-differential inclusions

Sotiris K. Ntouyas; Sorasak Laoprasittichok; Jessada Tariboon

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2015)

  • Volume: 35, Issue: 2, page 151-164
  • ISSN: 1509-9407

Abstract

top
In this paper we study an existence result for initial value problems for hybrid fractional integro-differential inclusions. A hybrid fixed point theorem for a sum of three operators due to Dhage is used. An example illustrating the obtained result is also presented.

How to cite

top

Sotiris K. Ntouyas, Sorasak Laoprasittichok, and Jessada Tariboon. "Hybrid fractional integro-differential inclusions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 35.2 (2015): 151-164. <http://eudml.org/doc/276666>.

@article{SotirisK2015,
abstract = {In this paper we study an existence result for initial value problems for hybrid fractional integro-differential inclusions. A hybrid fixed point theorem for a sum of three operators due to Dhage is used. An example illustrating the obtained result is also presented.},
author = {Sotiris K. Ntouyas, Sorasak Laoprasittichok, Jessada Tariboon},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {fractional differential equations; hybrid differential inclusions; fixed point theorems},
language = {eng},
number = {2},
pages = {151-164},
title = {Hybrid fractional integro-differential inclusions},
url = {http://eudml.org/doc/276666},
volume = {35},
year = {2015},
}

TY - JOUR
AU - Sotiris K. Ntouyas
AU - Sorasak Laoprasittichok
AU - Jessada Tariboon
TI - Hybrid fractional integro-differential inclusions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2015
VL - 35
IS - 2
SP - 151
EP - 164
AB - In this paper we study an existence result for initial value problems for hybrid fractional integro-differential inclusions. A hybrid fixed point theorem for a sum of three operators due to Dhage is used. An example illustrating the obtained result is also presented.
LA - eng
KW - fractional differential equations; hybrid differential inclusions; fixed point theorems
UR - http://eudml.org/doc/276666
ER -

References

top
  1. [1] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations (North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006). 
  2. [2] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley and Sons, New York, 1993). Zbl0789.26002
  3. [3] V. Lakshmikantham, S. Leela and J. Vasundhara Devi, Theory of Fractional Dynamic Systems (Cambridge Academic Publishers, Cambridge, 2009). Zbl1188.37002
  4. [4] V. Lakshmikantham and A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (8) (2008), 2677-2682. doi: 10.1016/j.na.2007.08.042 Zbl1161.34001
  5. [5] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999). 
  6. [6] J. Sabatier, O.P. Agrawal and J.A.T. Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (Springer, Dordrecht, 2007). doi: 10.1007/978-1-4020-6042-7 Zbl1116.00014
  7. [7] B. Ahmad, Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations, Appl. Math. Lett. 23 (2010), 390-394. doi: 10.1016/j.aml.2009.11.004 
  8. [8] B. Ahmad and J.J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl. 58 (2009), 1838-1843. doi: 10.1016/j.camwa.2009.07.091 Zbl1205.34003
  9. [9] P. Thiramanus, S.K. Ntouyas and J. Tariboon, Existence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions, Abstr. Appl. Anal. Volume 2014, Article ID 902054, 9 pages. Zbl06581195
  10. [10] J. Tariboon, S.K. Ntouyas and W. Sudsutad, Fractional integral problems for fractional differential equations via Caputo derivative, Adv. Differ. Equ. 2014 (2014), 181. doi: 10.1186/1687-1847-2014-181 Zbl1307.34017
  11. [11] B. Ahmad, S.K. Ntouyas and A. Alsaedi, New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Differ. Equ. (2011), Art. ID 107384, pp. 11. Zbl1204.34005
  12. [12] B. Ahmad and S.K. Ntouyas, A four-point nonlocal integral boundary value problem for fractional differential equations of arbitrary order, Electron. J. Qual. Theory Differ. Equ. (2011) No. 22, pp. 15. doi: 10.14232/ejqtde.2011.1.22 Zbl06528026
  13. [13] B. Ahmad and S. Sivasundaram, Existence and uniqueness results for nonlinear boundary value problems of fractional differential equations with separated boundary conditions, Commun. Appl. Anal. 13 (2009), 121-228. Zbl1180.34003
  14. [14] B. Ahmad and S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput. 217 (2010), 480-487. doi: 10.1016/j.amc.2010.05.080 Zbl1207.45014
  15. [15] B. Ahmad, S.K. Ntouyas and A. Alsaedi, Existence theorems for nonlocal multi-valued Hadamard fractional integro-differential boundary value problems, J. Ineq. Appl. 2014 (2014), 454. doi: 10.1186/1029-242X-2014-454 
  16. [16] Y. Zhao, S. Sun, Z. Han and Q. Li, Theory of fractional hybrid differential equations, Comput. Math. Appl. 62 (2011), 1312-1324. doi: 10.1016/j.camwa.2011.03.041 Zbl1228.45017
  17. [17] S. Sun, Y. Zhao, Z. Han and Y. Li, The existence of solutions for boundary value problem of fractional hybrid differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4961-4967. doi: 10.1016/j.cnsns.2012.06.001 Zbl06160173
  18. [18] B. Ahmad and S.K. Ntouyas, An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions, Abstr. Appl. Anal. (2014), Art. ID 705809, 7 pages. Zbl1315.34007
  19. [19] B.C. Dhage and S.K. Ntouyas, Existence results for boundary value problems for fractional hybrid differential inclucions, Topol. Methods Nonlinar Anal. 44 (2014), 229-238. 
  20. [20] B. Ahmad, S.K. Ntouyas and A. Alsaedi, Existence results for a system of coupled hybrid fractional differential equations, The Scientific World Journal, Volume 2014, Article ID 426438, 6 pages. 
  21. [21] B. Ahmad and S.K. Ntouyas, An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions, Abstr. Appl. Anal. 2014 (2014), Article ID 705809, 7 pages. Zbl1315.34007
  22. [22] B.C. Dhage, A fixed point theorem in Banach algebras with applications to functional integral equations, Kyungpook Math. J. 44 (2004), 145-155. 
  23. [23] S. Sitho, S.K. Ntouyas and J. Tariboon, Existence results for hybrid fractional integro-differential equations, Bound. Value Prob. 2015 (2015), 113. doi: 10.1186/s13661-015-0376-7 Zbl06581304
  24. [24] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. Zbl0151.10703

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.