Spaces of Lipschitz functions on metric spaces
Diethard Pallaschke; Dieter Pumplün
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2015)
- Volume: 35, Issue: 1, page 5-23
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topDiethard Pallaschke, and Dieter Pumplün. "Spaces of Lipschitz functions on metric spaces." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 35.1 (2015): 5-23. <http://eudml.org/doc/276678>.
@article{DiethardPallaschke2015,
abstract = {In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.},
author = {Diethard Pallaschke, Dieter Pumplün},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {categories of Lipschitz spaces; Saks spaces; base normed spaces},
language = {eng},
number = {1},
pages = {5-23},
title = {Spaces of Lipschitz functions on metric spaces},
url = {http://eudml.org/doc/276678},
volume = {35},
year = {2015},
}
TY - JOUR
AU - Diethard Pallaschke
AU - Dieter Pumplün
TI - Spaces of Lipschitz functions on metric spaces
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2015
VL - 35
IS - 1
SP - 5
EP - 23
AB - In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.
LA - eng
KW - categories of Lipschitz spaces; Saks spaces; base normed spaces
UR - http://eudml.org/doc/276678
ER -
References
top- [1] R.F. Arens and J. Eells, Jr, On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403. doi: 10.2140/pjm.1956.6.397 Zbl0073.39601
- [2] H. Bauer, Wahrscheinlichkeitstheorie (5te Auflage), de Gruyter Lehrbuch, Walter de Gruyter & Co. (Berlin, 2002).
- [3] N. Bourbaki, Éléments de mathématique. XI. Première partie: Les structures fondamentales de l' analyse, no. 1102. Hermann et Cie. (Paris, 1950).
- [4] N. Dunford and J.T. Schwartz, Linear Operators: Part I, Interscience Publishers, Inc. (New York, 1957). Zbl0128.34803
- [5] D. Pumplün, Elemente der Kategorientheorie, Hochschultaschenbuch (Spektrum Akademischer Verlag, Heidelberg, Berlin, 1999).
- [6] D. Pumplün, The metric completion of convex sets and modules, Result. Math. 41 (2002), 346-360. doi: 10.1007/BF03322777 Zbl1034.52004
- [7] D. Pumplün, A universal compactification of topological positively convex sets, J. Convex Anal. 18 (4) (2011), 999-1012. Zbl1244.52004
- [8] S. Rolewicz, Metric Linear Spaces, PWN - Polish Scientific Publishers, Warszawa and D. Reidel Publishing Company (Dordrecht, 1972).
- [9] Z. Semadeni, Banach Spaces of Continuous Functions, Vol. I PWN - Polish Scientific Publishers (Warszawa, 1971).
- [10] Z. Semadeni, Some Saks-space dualities in harmonic analysis on commutative semigroups, Special topics of applied mathematics (Proc. Sem., Ges. Math. Datenverarb., Bonn, 1979), 71-87 (North-Holland, Amsterdam-New York, 1980).
- [11] D.R. Sherbert, The structure of ideals and point derivations in Banach Algebras of Lipschitz functions, Trans AMS 111 (1964), 240-272. doi: 10.1090/S0002-9947-1964-0161177-1 Zbl0121.10204
- [12] Nik Weaver, Lipschitz Algebras, World Scientific (Singapore, New Jersey, London, Hong Kong, 1999).
- [13] Yau Chuen Wong and Kung Fu Ng, Partially Ordered Topological Vector Spaces, Oxford Mathematical Monographs. Clarendon Press, Oxford, 1973. Zbl0269.46007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.