bi-BL-algebra

Mahdeieh Abbasloo; Arsham Borumand Saeid

Discussiones Mathematicae - General Algebra and Applications (2011)

  • Volume: 31, Issue: 2, page 231-260
  • ISSN: 1509-9415

Abstract

top
In this paper, we introduce the notion of a bi-BL-algebra, bi-filter, bi-deductive system and bi-Boolean elements of a bi-BL-algebra and deal with bi-filters in bi-BL-algebra. We study this structure and construct the quotient of bi-BL-algebra. Also present a classification for examples of proper bi-BL-algebras.

How to cite

top

Mahdeieh Abbasloo, and Arsham Borumand Saeid. "bi-BL-algebra." Discussiones Mathematicae - General Algebra and Applications 31.2 (2011): 231-260. <http://eudml.org/doc/276682>.

@article{MahdeiehAbbasloo2011,
abstract = {In this paper, we introduce the notion of a bi-BL-algebra, bi-filter, bi-deductive system and bi-Boolean elements of a bi-BL-algebra and deal with bi-filters in bi-BL-algebra. We study this structure and construct the quotient of bi-BL-algebra. Also present a classification for examples of proper bi-BL-algebras.},
author = {Mahdeieh Abbasloo, Arsham Borumand Saeid},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {bi-BL-algebra; bi-filter; bi-deductive system; bi-Boolean elements of a bi-BL-algebra},
language = {eng},
number = {2},
pages = {231-260},
title = {bi-BL-algebra},
url = {http://eudml.org/doc/276682},
volume = {31},
year = {2011},
}

TY - JOUR
AU - Mahdeieh Abbasloo
AU - Arsham Borumand Saeid
TI - bi-BL-algebra
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2011
VL - 31
IS - 2
SP - 231
EP - 260
AB - In this paper, we introduce the notion of a bi-BL-algebra, bi-filter, bi-deductive system and bi-Boolean elements of a bi-BL-algebra and deal with bi-filters in bi-BL-algebra. We study this structure and construct the quotient of bi-BL-algebra. Also present a classification for examples of proper bi-BL-algebras.
LA - eng
KW - bi-BL-algebra; bi-filter; bi-deductive system; bi-Boolean elements of a bi-BL-algebra
UR - http://eudml.org/doc/276682
ER -

References

top
  1. [1] A. Borumand Saeid, A. Ahadpanah and L. Torkzadeh, Smarandache BL-algebra, J. Applied Logic 8 (2010), 253-261. doi: 10.1016/j.jal.2010.06.001 
  2. [2] A. Borumand Saeid and S. Motamed, Normal filters in BL-algebras, World Applied Sci. J. 7 (Special Issue Appl. Math.), (2009), 70-76. Zbl1188.03047
  3. [3] A. Borumand Saeid and S. Motamed, Some Results in BL-algebras, Math. Logic Quat 55 (6) (2009), 649-658. doi: 10.1002/malq.200910025 Zbl1188.03047
  4. [4] D. Busneag and D. Piciu, On the lattice of deductive systems of a BL-algebra, Central Eur. J Math. 1 (2) (2003), 221-238. doi: 10.2478/BF02476010 Zbl1040.03047
  5. [5] R. Cingnoli, I.M.L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic publ., Dordrecht, 2000. doi: 10.1007/978-94-015-9480-6 
  6. [6] R. Cignoli, F. Esteva, L. Godo and A. Torrens, Basic fuzzy logic is the logic of continuous t-norm and their residua, Soft Comput 4 (2000), 106-112. doi: 10.1007/s005000000044 
  7. [7] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo BL-algebra: Part I, Mult val logic 8 (5-6) (2002), 673-714. Zbl1028.06007
  8. [8] A. Di Nola and L. Leustean, Compact representations of BL-algebras, Arch-Math. Logic 42 (2003), 737-761. doi: 10.1007/s00153-003-0178-y Zbl1040.03048
  9. [9] P. Hajek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998. http://dx.doi.org/10.1007/978-94-011-5300-3 Zbl0937.03030
  10. [10] M. Haveshki, A. Borumand Saeid and E. Eslami, Some types of filters in BL-algebras, Soft Computing 10 (2006), 657-664. doi: 10.1007/s00500-005-0534-4 Zbl1103.03062
  11. [11] A. Iorgulescu, Algebras of Logic as BCK-algebras, Academy of Economic Studies, Bucharest, Editura 2008. Zbl1172.03038
  12. [12] A. Iorgulescu, Classes of BCK-algebra-part III, Preprint series of the Institute of Mathematics of the Romanian Academy, preprint nr, 3/2004 (2004), 1-37. 
  13. [13] M. Kondo and W.A. Dudck, Filter theory of BL-algebras, Soft Computing 12 (2007), 419-423. 
  14. [14] R. Padilla, Smarandache algebraic structures, Bull. Pure Appl. Sci., Delhi 17 (1) (1998), 119-121. Zbl0914.08003
  15. [15] D. Piciu, Algebras of Fuzzy Logic, Ed. Universitaria Craiova, 2007. Zbl1153.06005
  16. [16] E. Turunen, BL-algebras of basic fuzzy logic, Mathware and soft computing 6 (1999), 49-61. Zbl0962.03020
  17. [17] E. Turunen, Boolean deductive systems of BL-algebras, Arch Math. Logic 40 (2001), 467-473. doi: 10.1007/s001530100088 Zbl1030.03048
  18. [18] E. Turunen, Mathematics behind fuzzy logic, Physica-Verlag, 1999. Zbl0940.03029
  19. [19] W.B. Vasantha Kandasamy, Bialgebraic structures and Smaranche bialgebraic structures, American Research Press, 2003. Zbl1054.20054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.