Application of the Novel (G′/G)-Expansion Method to the Regularized Long Wave Equation

Md. Nur Alam; Fethi Bin Muhammad Belgacem

Waves, Wavelets and Fractals (2015)

  • Volume: 1, Issue: 1
  • ISSN: 2449-5557

Abstract

top
In this paper we investigate the regularized long wave equation involving parameters by applying the novel (G′/G)-expansion method together with the generalized Riccati equation. The solutions obtained in this manuscript may be imperative and significant for the explanation of some practical physical phenomena. The performance of this method is reliable, useful, and gives us more new exact solutions than the existing methods such as the basic (G′/G)-expansion method, the extended (G′/G)-expansion method, the improved (G′/G)-expansion method, the generalized and improved (G′/G)-expansion method etc. The obtained traveling wave solutions including solitons and periodic solutions are presented through the hyperbolic, the trigonometric and the rational functions. The method turns out to be a powerful mathematical tool and a step foward towards, albeit easily and yet efficiently, solving nonlinear evolution equations.

How to cite

top

Md. Nur Alam, and Fethi Bin Muhammad Belgacem. "Application of the Novel (G′/G)-Expansion Method to the Regularized Long Wave Equation." Waves, Wavelets and Fractals 1.1 (2015): null. <http://eudml.org/doc/276710>.

@article{Md2015,
abstract = {In this paper we investigate the regularized long wave equation involving parameters by applying the novel (G′/G)-expansion method together with the generalized Riccati equation. The solutions obtained in this manuscript may be imperative and significant for the explanation of some practical physical phenomena. The performance of this method is reliable, useful, and gives us more new exact solutions than the existing methods such as the basic (G′/G)-expansion method, the extended (G′/G)-expansion method, the improved (G′/G)-expansion method, the generalized and improved (G′/G)-expansion method etc. The obtained traveling wave solutions including solitons and periodic solutions are presented through the hyperbolic, the trigonometric and the rational functions. The method turns out to be a powerful mathematical tool and a step foward towards, albeit easily and yet efficiently, solving nonlinear evolution equations.},
author = {Md. Nur Alam, Fethi Bin Muhammad Belgacem},
journal = {Waves, Wavelets and Fractals},
keywords = {Novel (G′/G)-expansion method; the generalized regularized long wave equation; auxiliary nonlinear ordinary differential equation; homogeneous balance; travelling wave solutions},
language = {eng},
number = {1},
pages = {null},
title = {Application of the Novel (G′/G)-Expansion Method to the Regularized Long Wave Equation},
url = {http://eudml.org/doc/276710},
volume = {1},
year = {2015},
}

TY - JOUR
AU - Md. Nur Alam
AU - Fethi Bin Muhammad Belgacem
TI - Application of the Novel (G′/G)-Expansion Method to the Regularized Long Wave Equation
JO - Waves, Wavelets and Fractals
PY - 2015
VL - 1
IS - 1
SP - null
AB - In this paper we investigate the regularized long wave equation involving parameters by applying the novel (G′/G)-expansion method together with the generalized Riccati equation. The solutions obtained in this manuscript may be imperative and significant for the explanation of some practical physical phenomena. The performance of this method is reliable, useful, and gives us more new exact solutions than the existing methods such as the basic (G′/G)-expansion method, the extended (G′/G)-expansion method, the improved (G′/G)-expansion method, the generalized and improved (G′/G)-expansion method etc. The obtained traveling wave solutions including solitons and periodic solutions are presented through the hyperbolic, the trigonometric and the rational functions. The method turns out to be a powerful mathematical tool and a step foward towards, albeit easily and yet efficiently, solving nonlinear evolution equations.
LA - eng
KW - Novel (G′/G)-expansion method; the generalized regularized long wave equation; auxiliary nonlinear ordinary differential equation; homogeneous balance; travelling wave solutions
UR - http://eudml.org/doc/276710
ER -

References

top
  1. [1] M. Wang, Solitary wave solutions for variant Boussinesq equations, Phy. Lett. A, 199 (1995) 169–172.  Zbl1020.35528
  2. [2] E.M.E. Zayed, H.A. Zedan and K.A. Gepreel, On the solitary wave solutions for nonlinear Hirota-Sasuma coupled KDV equations, Chaos, Solitons and Fractals, 22 (2004) 285–303.  Zbl1069.35080
  3. [3] L. Yang, J. Liu and K. Yang, Exact solutions of nonlinear PDE nonlinear transformations and reduction of nonlinear PDE to a quadrature, Phys. Lett. A 278 (2001) 267–270.  Zbl0972.35003
  4. [4] E.M.E. Zayed, H.A. Zedan and K.A. Gepreel, Group analysis and modified tanh-function to find the invariant solutions and soliton solution for nonlinear Euler equations, Int. J. Nonlinear Sci. Numer. Simul. 5 (2004) 221–234. [Crossref] 
  5. [5] M. Inc and D.J. Evans, On traveling wave solutions of some nonlinear evolution equations, Int. J. Comput. Math. 8 (2004) 191–202. [Crossref] Zbl1047.65091
  6. [6] J.L. Hu, A new method of exact traveling wave solution for coupled nonlinear differential equations, Phys. Lett. A 322 (2004) 211–216.  Zbl1118.81366
  7. [7] E.G. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 277 (2000) 212-218.  Zbl1167.35331
  8. [8] E.G. Fan, Multiple traveling wave solutions of nonlinear evolution equations using a unifiex algebraic method, J. Phys. A, Math. Gen. 35 (2002) 6853–6872. [Crossref] Zbl1039.35029
  9. [9] Z.Y. Yan and H.Q. Zhang, New explicit and exact traveling wave solutions for a system of variant Boussinesq equations in mathematical physics, Phys. Lett. A 252 (1999) 291–296.  Zbl0938.35130
  10. [10] M.J. Ablowitz and P.A. Clarkson, Soliton, nonlinear evolution equations and inverse scattering, Cambridge University Press, New York, 1991.  Zbl0762.35001
  11. [11] M.G. Hafez, M.N. Alam and M.A. Akbar, Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system, J. King Saud Univ.-Sci. (2015) 27, 105–112. doi: 10.1016/j.jksus.2014.09.001. [Crossref] 
  12. [12] M.G. Hatez, M.N. Alam, and M.A. Akbar, Application of the exp(−ɸ(ɳ))-expansion method to find exact solutions for the solitary wave equation in an unmagnatized dusty plasma, World Applied Sciences Journal 32 (10): 2150-2155, 2014, DOI: 10.5829/idosi.wasj.2014.32.10.3569. [Crossref] 
  13. [13] H.O. Roshid, M.N. Alam, and M.A. Akbar, Traveling and Non-traveling Wave Solutions for Foam Drainage Equation, Int. J. of Appl. Math and Mech., 10 (11): 65–75, 2014.  
  14. [14] J.H. He and X.H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons Fract. 30 (2006) 700–708.  Zbl1141.35448
  15. [15] S. Zhang, Application of Exp-function method to high-dimensional nonlinear evolution equation, Chaos, Solitons Fract. 38 (2008) 270–276.  Zbl1142.35593
  16. [16] M.L.Wang, X.Z. Li and J. Zhang, The (G′/G)-expansion method and travelingwave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008) 417–423. [WoS] 
  17. [17] M.N. Alam, M.A. Akbar and M.F. Hoque, Exact traveling wave solutions of the (3+1)-dimensional mKdV-ZK equation and the (1+1)-dimensional compound KdVB equation using new approach of the generalized (G′/G)-expansion method, Pramana Journal of Physics, 83 (3) (2014) 317–329. [WoS][Crossref] 
  18. [18] M.N. Alam and M.A. Akbar and H.O. Roshid, Traveling wave solutions of the Boussinesq equation via the new approach of generalized (G′/G)-Expansion Method, SpringerPlus, 3 (2014) 43 doi:10.1186/2193-1801-3-43. [Crossref][WoS] 
  19. [19] M.N. Alam and M.A. Akbar, Traveling wave solutions for the mKdV equation and the Gardner equation by new approach of the generalized (G′/G)-expansion method, Journal of the Egyptian Mathematical Society, 22 (2014), 402–406.  Zbl1304.35180
  20. [20] E.M.E. Zayed and S. Al-Joudi, Applications of an extended (G′/G)-expansion method to find exact solutions of nonlinear PDEs in Mathematical Physics, Mathematical Problems in Engineering, Vol. 2010 Art. ID 768573 19 pages doi. 10. 1155/2010/768573.  Zbl1207.35262
  21. [21] J. Zhang, F. Jiang and X. Zhao, An improved (G′/G)-expansion method for solving nonlinear evolution equations, Int. J. Com. Math., 87(8) (2010) 1716–1725. [WoS] Zbl1197.65161
  22. [22] J. Zhang, X. Wei and Y. Lu, A generalized (G′/G)-expansion method and its applications, Phys. Lett. A, 372 (2008) 3653–3658. [WoS] Zbl1220.37070
  23. [23] A. Bekir, Application of the (G′/G)-expansion method for nonlinear evolution equations, Phys. Lett. A, 372 (2008) 3400– 3406.  Zbl1228.35195
  24. [24] S. Zhang, J. Tong and W. Wang, A generalized (G′/G)-expansion method for the mKdV equation with variable coeflcients, Phys. Lett. A, 372 (2008) 2254–2257. [WoS] Zbl1220.37072
  25. [25] M.A. Akbar, N.H.M. Ali and E.M.E. Zayed, A generalized and improved (G′/G)-expansion method for nonlinear evolution equations, Math. Prob. Engr., Vol. 2012 (2012), 22 pages. doi: 10.1155/2012/459879. [Crossref] Zbl1264.35078
  26. [26] E.M.E. Zayed, New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized (G′/G)-expansion method, J. Phys. A: Math. Theor., 42 (2009) 195202–195214. [WoS][Crossref] Zbl1170.35310
  27. [27] M.M. Kabir, A. Borhanifar and R. Abazari, Application of (G′/G)-expansion method to Regularized LongWave (RLW) equation, Computers and Mathematics with Applications 61(2011), 2044–2047.  Zbl1219.65143
  28. [28] R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge, 2004.  Zbl1099.35111
  29. [29] J. Weiss, M. Tabor and G .Carnevale, The Painleve property for partial differential equations, J. Math. Phys. 24 (1983) 522. [Crossref] Zbl0514.35083
  30. [30] M.N. Alam, M.A. Akbar and S.T. Mohyud-Din, A novel (G′/G)-expansion method and its application to the Boussinesq equation, Chin. Phys. B, vol. 23(2), 2014, 020203-020210, DOI: 10.1088/1674-1056/23/2/020203. [WoS][Crossref] 
  31. [31] M. Shakeel and S.T. Mohyud-Din, New (G′/G)-expansion method and its application to the ZK-BBM equation, (2014). DOI: 10.1016/j.jaubas.2014.02.007. (in press). [Crossref] 
  32. [32] M.N. Alam and M.A. Akbar, Traveling wave solutions of the nonlinear (1+1)-dimensional modified Benjamin-Bona-Mahony equation by using novel (G′/G)-expansion method, Phys. Review Res. Int., 4(1) (2014) 147–165.  
  33. [33] M.G. Hafez, M.N. Alam and M.A. Akbar, Exact traveling wave solutions to the Klein-Gordon equation using the novelexpansion method, Results in Physics 4 (2014) 177.  
  34. [34] M. Shakeel, Q.M. Ul-Hassan, and J. Ahmad, Applications of the novel (G′/G)-expansion method for a time fractional simplified modified MCH equation, Abstract Appl. Analysis, 2014 (2014) Article ID 601961 16 pages. [WoS] 
  35. [35] E. Eckstein, F.B.M. Belgacem, Model of platelet transport in flowing bloodwith drift and diffusion terms, Biophysical Journal, Vol.60, No.1, (1991) 53–69. [Crossref] 
  36. [36] F.B.M. Belgacem, N. Smaoui, Interactions of Parabolic Convective Diffusion Equations and Navier- Stokes Equations Connected with Population Dispersal, Communications on Applied Nonlinear Analysis, Vol. 8, No. 3, (2001) 47–67.  Zbl0988.35071
  37. [37] N. Smaoui, F.B.M. Belgacem, Connections between the Convective Diffusion Equation and the Forced Burgers Equation, Journal of Applied Mathematics and Stochastic Analysis, Vol. 15, No. 1, (2002) 57–75.  Zbl1043.35008
  38. [38] S. Zhu, The generalized Riccati equationmapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti-Leon-Pempinelle equation. Chaos Soliton Fract. 37, (2008) 1335–1342. [Crossref][WoS] Zbl1142.35597

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.