Asymptotic integration of differential equations with singular p -Laplacian

Milan Medveď; Eva Pekárková

Archivum Mathematicum (2016)

  • Volume: 052, Issue: 1, page 13-19
  • ISSN: 0044-8753

Abstract

top
In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with p - Laplacian, where 1 < p < 2 . We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as t .

How to cite

top

Medveď, Milan, and Pekárková, Eva. "Asymptotic integration of differential equations with singular $p$-Laplacian." Archivum Mathematicum 052.1 (2016): 13-19. <http://eudml.org/doc/276747>.

@article{Medveď2016,
abstract = {In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with $p-$Laplacian, where $1 < p < 2$. We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as $t \rightarrow \infty $.},
author = {Medveď, Milan, Pekárková, Eva},
journal = {Archivum Mathematicum},
keywords = {$p$-Laplacian; differential equation; asymptotic integration},
language = {eng},
number = {1},
pages = {13-19},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Asymptotic integration of differential equations with singular $p$-Laplacian},
url = {http://eudml.org/doc/276747},
volume = {052},
year = {2016},
}

TY - JOUR
AU - Medveď, Milan
AU - Pekárková, Eva
TI - Asymptotic integration of differential equations with singular $p$-Laplacian
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 1
SP - 13
EP - 19
AB - In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with $p-$Laplacian, where $1 < p < 2$. We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as $t \rightarrow \infty $.
LA - eng
KW - $p$-Laplacian; differential equation; asymptotic integration
UR - http://eudml.org/doc/276747
ER -

References

top
  1. Agarwal, R.P., Djebali, S., Moussaoui, T., Mustafa, O.G., 10.1016/j.cam.2005.11.038, J. Comput. Appl. Math 202 (2007), 352–376. (2007) Zbl1123.34038MR2319962DOI10.1016/j.cam.2005.11.038
  2. Bartušek, M., Medveď, M., Existence of global solutions for systems of second-order functional-differential equations with p -Laplacian, EJDE 40 (2008), 1–8. (2008) Zbl1171.34335MR2392944
  3. Bartušek, M., Pekárková, E., On the existence of proper solutions of quasilinear second order differential equations, EJQTDE 1 (2007), 1–14. (2007) MR2295683
  4. Bihari, I., 10.1007/BF02022967, Acta Math. Hungar. 7 (1956), 81–94. (1956) MR0079154DOI10.1007/BF02022967
  5. Caligo, D., Comportamento asintotico degli integrali dell’equazione y ' ' ( x ) + A ( x ) y ( x ) = 0 , nell’ipotesi lim x + A ( x ) = 0 , Boll. Un. Mat. Ital. (2) 3 (1941), 286–295. (1941) MR0005219
  6. Cohen, D.S., 10.1090/S0002-9939-1967-0212289-3, Proc. Amer. Math. Soc. 18 (1967), 607–609. (1967) MR0212289DOI10.1090/S0002-9939-1967-0212289-3
  7. Constantin, A., On the asymptotic behavior of second order nonlinear differential equations, Rend. Mat. Appl. (7) 13 (4) (1993), 627–634. (1993) MR1283990
  8. Constantin, A., Solutions globales d’équations différentielles perturbées, C. R. Acad. Sci. Paris Sér. I Math. 320 (11) (1995), 1319–1322. (1995) MR1338279
  9. Constantin, A., 10.1007/s10231-004-0100-1, Ann. Mat. Pura Appl. (4) 184 (2) (2005), 131–138. (2005) Zbl1223.34041MR2149089DOI10.1007/s10231-004-0100-1
  10. Dannan, F.M., 10.1016/0022-247X(85)90014-9, J. Math. anal. Appl. 108 (1) (1985), 151–164. (1985) MR0791139DOI10.1016/0022-247X(85)90014-9
  11. Kusano, T., Trench, W.F., 10.1112/jlms/s2-31.3.478, J. London Math. Soc.(2) 31 (3) (1985), 478–486. (1985) MR0812777DOI10.1112/jlms/s2-31.3.478
  12. Kusano, T., Trench, W.F., Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations, Ann. Mat. Pura Appl. (4) 142 (1985), 381–392. (1985) MR0839046
  13. Lipovan, O., 10.1017/S0017089502001143, Glasgow Math. J. 45 (1) (2003), 179–187. (2003) Zbl1037.34041MR1973349DOI10.1017/S0017089502001143
  14. Medveď, M., Moussaoui, T., 10.1016/j.na.2009.09.042, Nonlinear Anal. 72 (2010), 1–8. (2010) Zbl1192.34059MR2577598DOI10.1016/j.na.2009.09.042
  15. Medveď, M., Pekárková, E., Existence of global solutions for systems of second-order differential equations with p -Laplacian, EJDE 2007 (136) (2007), 1–9. (2007) Zbl1138.34316MR2349964
  16. Medveď, M., Pekárková, E., Long time behavior of second order differential equations with p -Laplacian, EJDE 2008 (108) (2008), 1–12. (2008) MR2430905
  17. Mustafa, O.G., Rogovchenko, Y.V., 10.1016/S0362-546X(01)00834-3, Nonlinear Anal. 51 (2002), 339–368. (2002) Zbl1017.34005MR1918348DOI10.1016/S0362-546X(01)00834-3
  18. Mustafa, O.G., Rogovchenko, Y.V., Asymptotic behavior of nonoscillatory solutions of second-order nonlinear differential equations, Dynamic Systems and Applications 4 (2004), 312–319. (2004) Zbl1082.34042MR2117799
  19. Pekárková, E., Estimations of noncontinuable solutions of second order differential equations with p -Laplacian, Arch. Math.( Brno) 46 (2010), 135–144. (2010) Zbl1240.34187MR2684255
  20. Philos, Ch.G., Purnaras, I.K., Tsamatos, P.Ch., 10.1016/S0362-546X(04)00323-2, Nonlinear Anal. 59 (2004), 1157–1179. (2004) MR2098511DOI10.1016/S0362-546X(04)00323-2
  21. Rogovchenko, S.P., Rogovchenko, Y.V., Asymptotics of solutions for a class of second order nonlinear differential equations, Portugal. Math. 57 (1) (2000), 17–32. (2000) 
  22. Rogovchenko, Y.V., On asymptotic behavior of solutions for a class of second order nonlinear differential equations, Collect. Math. 49 (1) (1998), 113–120. (1998) MR1629766
  23. Tong, J., 10.1090/S0002-9939-1982-0637175-4, Proc. Amer. Math. Soc. 54 (1982), 235–236. (1982) Zbl0491.34036MR0637175DOI10.1090/S0002-9939-1982-0637175-4
  24. Trench, W.F., 10.1090/S0002-9939-1963-0142844-7, Proc. Amer. Math. Soc. 54 (1963), 12–14. (1963) MR0142844DOI10.1090/S0002-9939-1963-0142844-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.