Asymptotic integration of differential equations with singular -Laplacian
Archivum Mathematicum (2016)
- Volume: 052, Issue: 1, page 13-19
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMedveď, Milan, and Pekárková, Eva. "Asymptotic integration of differential equations with singular $p$-Laplacian." Archivum Mathematicum 052.1 (2016): 13-19. <http://eudml.org/doc/276747>.
@article{Medveď2016,
abstract = {In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with $p-$Laplacian, where $1 < p < 2$. We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as $t \rightarrow \infty $.},
author = {Medveď, Milan, Pekárková, Eva},
journal = {Archivum Mathematicum},
keywords = {$p$-Laplacian; differential equation; asymptotic integration},
language = {eng},
number = {1},
pages = {13-19},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Asymptotic integration of differential equations with singular $p$-Laplacian},
url = {http://eudml.org/doc/276747},
volume = {052},
year = {2016},
}
TY - JOUR
AU - Medveď, Milan
AU - Pekárková, Eva
TI - Asymptotic integration of differential equations with singular $p$-Laplacian
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 1
SP - 13
EP - 19
AB - In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with $p-$Laplacian, where $1 < p < 2$. We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as $t \rightarrow \infty $.
LA - eng
KW - $p$-Laplacian; differential equation; asymptotic integration
UR - http://eudml.org/doc/276747
ER -
References
top- Agarwal, R.P., Djebali, S., Moussaoui, T., Mustafa, O.G., 10.1016/j.cam.2005.11.038, J. Comput. Appl. Math 202 (2007), 352–376. (2007) Zbl1123.34038MR2319962DOI10.1016/j.cam.2005.11.038
- Bartušek, M., Medveď, M., Existence of global solutions for systems of second-order functional-differential equations with -Laplacian, EJDE 40 (2008), 1–8. (2008) Zbl1171.34335MR2392944
- Bartušek, M., Pekárková, E., On the existence of proper solutions of quasilinear second order differential equations, EJQTDE 1 (2007), 1–14. (2007) MR2295683
- Bihari, I., 10.1007/BF02022967, Acta Math. Hungar. 7 (1956), 81–94. (1956) MR0079154DOI10.1007/BF02022967
- Caligo, D., Comportamento asintotico degli integrali dell’equazione nell’ipotesi , Boll. Un. Mat. Ital. (2) 3 (1941), 286–295. (1941) MR0005219
- Cohen, D.S., 10.1090/S0002-9939-1967-0212289-3, Proc. Amer. Math. Soc. 18 (1967), 607–609. (1967) MR0212289DOI10.1090/S0002-9939-1967-0212289-3
- Constantin, A., On the asymptotic behavior of second order nonlinear differential equations, Rend. Mat. Appl. (7) 13 (4) (1993), 627–634. (1993) MR1283990
- Constantin, A., Solutions globales d’équations différentielles perturbées, C. R. Acad. Sci. Paris Sér. I Math. 320 (11) (1995), 1319–1322. (1995) MR1338279
- Constantin, A., 10.1007/s10231-004-0100-1, Ann. Mat. Pura Appl. (4) 184 (2) (2005), 131–138. (2005) Zbl1223.34041MR2149089DOI10.1007/s10231-004-0100-1
- Dannan, F.M., 10.1016/0022-247X(85)90014-9, J. Math. anal. Appl. 108 (1) (1985), 151–164. (1985) MR0791139DOI10.1016/0022-247X(85)90014-9
- Kusano, T., Trench, W.F., 10.1112/jlms/s2-31.3.478, J. London Math. Soc.(2) 31 (3) (1985), 478–486. (1985) MR0812777DOI10.1112/jlms/s2-31.3.478
- Kusano, T., Trench, W.F., Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations, Ann. Mat. Pura Appl. (4) 142 (1985), 381–392. (1985) MR0839046
- Lipovan, O., 10.1017/S0017089502001143, Glasgow Math. J. 45 (1) (2003), 179–187. (2003) Zbl1037.34041MR1973349DOI10.1017/S0017089502001143
- Medveď, M., Moussaoui, T., 10.1016/j.na.2009.09.042, Nonlinear Anal. 72 (2010), 1–8. (2010) Zbl1192.34059MR2577598DOI10.1016/j.na.2009.09.042
- Medveď, M., Pekárková, E., Existence of global solutions for systems of second-order differential equations with -Laplacian, EJDE 2007 (136) (2007), 1–9. (2007) Zbl1138.34316MR2349964
- Medveď, M., Pekárková, E., Long time behavior of second order differential equations with -Laplacian, EJDE 2008 (108) (2008), 1–12. (2008) MR2430905
- Mustafa, O.G., Rogovchenko, Y.V., 10.1016/S0362-546X(01)00834-3, Nonlinear Anal. 51 (2002), 339–368. (2002) Zbl1017.34005MR1918348DOI10.1016/S0362-546X(01)00834-3
- Mustafa, O.G., Rogovchenko, Y.V., Asymptotic behavior of nonoscillatory solutions of second-order nonlinear differential equations, Dynamic Systems and Applications 4 (2004), 312–319. (2004) Zbl1082.34042MR2117799
- Pekárková, E., Estimations of noncontinuable solutions of second order differential equations with -Laplacian, Arch. Math.( Brno) 46 (2010), 135–144. (2010) Zbl1240.34187MR2684255
- Philos, Ch.G., Purnaras, I.K., Tsamatos, P.Ch., 10.1016/S0362-546X(04)00323-2, Nonlinear Anal. 59 (2004), 1157–1179. (2004) MR2098511DOI10.1016/S0362-546X(04)00323-2
- Rogovchenko, S.P., Rogovchenko, Y.V., Asymptotics of solutions for a class of second order nonlinear differential equations, Portugal. Math. 57 (1) (2000), 17–32. (2000)
- Rogovchenko, Y.V., On asymptotic behavior of solutions for a class of second order nonlinear differential equations, Collect. Math. 49 (1) (1998), 113–120. (1998) MR1629766
- Tong, J., 10.1090/S0002-9939-1982-0637175-4, Proc. Amer. Math. Soc. 54 (1982), 235–236. (1982) Zbl0491.34036MR0637175DOI10.1090/S0002-9939-1982-0637175-4
- Trench, W.F., 10.1090/S0002-9939-1963-0142844-7, Proc. Amer. Math. Soc. 54 (1963), 12–14. (1963) MR0142844DOI10.1090/S0002-9939-1963-0142844-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.