Output synchronization of multi-agent port-Hamiltonian systems with link dynamics

Bing Wang; Xinghu Wang; Honghua Wang

Kybernetika (2016)

  • Volume: 52, Issue: 1, page 89-105
  • ISSN: 0023-5954

Abstract

top
In this paper, the output synchronization control is considered for multi-agent port-Hamiltonian systems with link dynamics. By using Hamiltonian energy function and Casimir function comprehensively, the design method is proposed to overcome the difficulties taken by link dynamics. The Hamiltonian function is used to handle the dynamic of agent, while the Casimir function is constructed to deal with the dynamic of link. Thus the Lyapunov function is generated by modifying the Hamiltonian function of forced Hamiltonian systems. Then, the proposed approach is applied in multi-machine power systems, which are interconnected in microgrid with power frequencies as link dynamics. Finally, the simulation result demonstrates the effectiveness of the gotten method.

How to cite

top

Wang, Bing, Wang, Xinghu, and Wang, Honghua. "Output synchronization of multi-agent port-Hamiltonian systems with link dynamics." Kybernetika 52.1 (2016): 89-105. <http://eudml.org/doc/276754>.

@article{Wang2016,
abstract = {In this paper, the output synchronization control is considered for multi-agent port-Hamiltonian systems with link dynamics. By using Hamiltonian energy function and Casimir function comprehensively, the design method is proposed to overcome the difficulties taken by link dynamics. The Hamiltonian function is used to handle the dynamic of agent, while the Casimir function is constructed to deal with the dynamic of link. Thus the Lyapunov function is generated by modifying the Hamiltonian function of forced Hamiltonian systems. Then, the proposed approach is applied in multi-machine power systems, which are interconnected in microgrid with power frequencies as link dynamics. Finally, the simulation result demonstrates the effectiveness of the gotten method.},
author = {Wang, Bing, Wang, Xinghu, Wang, Honghua},
journal = {Kybernetika},
keywords = {multi-agent system; port-Hamiltonian system; Casimir function; link dynamics; multi-machine power system},
language = {eng},
number = {1},
pages = {89-105},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Output synchronization of multi-agent port-Hamiltonian systems with link dynamics},
url = {http://eudml.org/doc/276754},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Wang, Bing
AU - Wang, Xinghu
AU - Wang, Honghua
TI - Output synchronization of multi-agent port-Hamiltonian systems with link dynamics
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 1
SP - 89
EP - 105
AB - In this paper, the output synchronization control is considered for multi-agent port-Hamiltonian systems with link dynamics. By using Hamiltonian energy function and Casimir function comprehensively, the design method is proposed to overcome the difficulties taken by link dynamics. The Hamiltonian function is used to handle the dynamic of agent, while the Casimir function is constructed to deal with the dynamic of link. Thus the Lyapunov function is generated by modifying the Hamiltonian function of forced Hamiltonian systems. Then, the proposed approach is applied in multi-machine power systems, which are interconnected in microgrid with power frequencies as link dynamics. Finally, the simulation result demonstrates the effectiveness of the gotten method.
LA - eng
KW - multi-agent system; port-Hamiltonian system; Casimir function; link dynamics; multi-machine power system
UR - http://eudml.org/doc/276754
ER -

References

top
  1. Arcak, M., 10.1109/tac.2007.902733, IEEE Trans. Automat. Control 52 (2007), 1380-1390. MR2341743DOI10.1109/tac.2007.902733
  2. Cheng, D., Xi, Z., Hong., Y., Qin, H., Energy-based stabilization of forced Hamiltonian systems and its application to power systems., Control Theory Appl. 17 (2000), 798-802. 
  3. Chopra, N., Spong, M. W., 10.1007/978-3-540-37347-6_6, In: Advances in Robot Control: from Everyday Physics to Human-Like Movements (S. Kawamura and M. Svinin, eds.), Springer-Verlag, New York 2006, pp. 107-134. Zbl1134.93308DOI10.1007/978-3-540-37347-6_6
  4. Godsil, C., Royle, G., 10.1007/978-1-4613-0163-9, Springer-Verlag, New York 2001. Zbl0968.05002MR1829620DOI10.1007/978-1-4613-0163-9
  5. Hong, Y., Gao, L., Cheng, D., Hu, J., 10.1109/tac.2007.895860, IEEE Trans. Automat. Control 52 (2007), 943-948. MR2324260DOI10.1109/tac.2007.895860
  6. Hu, J., On robust consensus of multi-agent systems with communication delays., Kybernetika 45 (2009), 768-784. Zbl1190.93003MR2599111
  7. Jafarian, M., Vos, E., Persis, C. De, Schaft, A. J. van der, Scherpen, J. M. A., 10.1016/j.automatica.2015.08.021, Automatica 61 (2015), 253-262. MR3401712DOI10.1016/j.automatica.2015.08.021
  8. Li, C., Wang, Y., 10.1016/s1874-1029(14)60004-5, Acta Automat. Sinica 40 (2014), 415-422. DOI10.1016/s1874-1029(14)60004-5
  9. Liu, T., Jiang, Z. P., 10.1109/tac.2013.2257616, IEEE Trans. Automat. Control 58 (2013), 2912-2917. MR3126000DOI10.1109/tac.2013.2257616
  10. Lu, Q., Sun, Y. Z., Xu, Z., Mochizuki, T., 10.1109/59.544670, IEEE Trans. Power Systems 11 (1996), 1957-1962. DOI10.1109/59.544670
  11. Macchelli, A., Melchiorri, C., 10.1109/tac.2005.858656, IEEE Trans. Automat. Control 50 (2005), 1839-1844. MR2182737DOI10.1109/tac.2005.858656
  12. Maschke, B., Ortega, R., Schaft, A. J. van der, 10.1109/9.871758, IEEE Trans. Automat. Control 45 (2000), 1498-1502. MR1797402DOI10.1109/9.871758
  13. Olfati-Saber, R., Murray, R. M., 10.1109/tac.2004.834113, IEEE Trans. Automat. Control 49 (2004), 1520-1533. MR2086916DOI10.1109/tac.2004.834113
  14. Ortega, R., Schaft, A. J. van der, Maschke, B., Escobar, G., 10.1016/s0005-1098(01)00278-3, Automatica 38 (2002), 585-596. MR2131469DOI10.1016/s0005-1098(01)00278-3
  15. Ren, W., 10.1109/tac.2008.924961, IEEE Trans. Automat. Control 53 (2008), 1503-1509. MR2451239DOI10.1109/tac.2008.924961
  16. Sakai, S., An impedance control for simplified hydraulic model with Casimir functions., In: Proc. SICE Annual Conference, Taipei 2010. 
  17. Shi, G., Johansson, K. H., Hong, Y., 10.1109/tac.2012.2215261, IEEE Trans. Automat. Control 58 (2013), 610-622. MR3029459DOI10.1109/tac.2012.2215261
  18. Sun, Y. Z., Li, X., Song, Y. H., A new Lyapunov function for transient stability analysis of controlled power systems., Power Engrg. Soc. Winter Meeting 2 (2000), 1325-1330. 
  19. Schaft, A. J. van der, 10.1007/978-1-4471-0507-7, Springer-Verlag, London 2000. MR1844565DOI10.1007/978-1-4471-0507-7
  20. Schaft, A. J. van der, Maschke, B. M., 10.1137/110840091, SIAM J. Control Optim. 51 (2013), 906-937. MR3032900DOI10.1137/110840091
  21. Wang, X., Xu, D., Hong, Y., 10.1016/j.sysconle.2014.09.004, Systems Control Lett 73 (2014), 58-66. Zbl1297.93018MR3270955DOI10.1016/j.sysconle.2014.09.004
  22. Wang, Y., Cheng, D., Li, C., Ge, Y., 10.1109/tac.2003.815037, IEEE Trans. Automat- Control 48 (2003), 1428-1433. MR2004379DOI10.1109/tac.2003.815037
  23. Wang, Y., Ge, S., 10.1109/tcst.2007.903367, IEEE Trans. Control Systems Technol. 16 (2008), 202-213. DOI10.1109/tcst.2007.903367
  24. Xi, Z., Cheng, D., Lu., Q., Mei, S., 10.1016/s0005-1098(01)00233-3, Automatica 38 (2002), 527-534. DOI10.1016/s0005-1098(01)00233-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.