Some results on spaces with -calibre
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 1, page 131-134
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topXuan, Wei-Feng, and Shi, Wei-Xue. "Some results on spaces with $\aleph _1$-calibre." Commentationes Mathematicae Universitatis Carolinae 57.1 (2016): 131-134. <http://eudml.org/doc/276778>.
@article{Xuan2016,
abstract = {We prove that, assuming CH, if $X$ is a space with $\aleph _1$-calibre and a zeroset diagonal, then $X$ is submetrizable. This gives a consistent positive answer to the question of Buzyakova in Observations on spaces with zeroset or regular $G_\delta $-diagonals, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469–473. We also make some observations on spaces with $\aleph _1$-calibre.},
author = {Xuan, Wei-Feng, Shi, Wei-Xue},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\aleph _1$-calibre; star countable; zeroset diagonal},
language = {eng},
number = {1},
pages = {131-134},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some results on spaces with $\aleph _1$-calibre},
url = {http://eudml.org/doc/276778},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Xuan, Wei-Feng
AU - Shi, Wei-Xue
TI - Some results on spaces with $\aleph _1$-calibre
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 1
SP - 131
EP - 134
AB - We prove that, assuming CH, if $X$ is a space with $\aleph _1$-calibre and a zeroset diagonal, then $X$ is submetrizable. This gives a consistent positive answer to the question of Buzyakova in Observations on spaces with zeroset or regular $G_\delta $-diagonals, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469–473. We also make some observations on spaces with $\aleph _1$-calibre.
LA - eng
KW - $\aleph _1$-calibre; star countable; zeroset diagonal
UR - http://eudml.org/doc/276778
ER -
References
top- Buzyakova R.Z., Observations on spaces with zeroset or regular -diagonals, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469–473. MR2174525
- Buzyakova R.Z., 10.1016/j.topol.2005.06.004, Topology Appl. 153 (2006), no. 11, 1696–1698. MR2227022DOI10.1016/j.topol.2005.06.004
- Basile D., Bella A., Ridderbos G.J., Weak extent, submetrizability and diagonal degrees, Houston J. Math. 40 (2014), no. 1, 255–266. MR3210565
- Engelking R., General Topology, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
- Ikenaga S., A class which contains Lindelöf spaces, separable spaces and countably compact spaces, Memoirs of Numazu College of Technology 18 (1983), 105–108.
- Martin H.W., 10.2140/pjm.1975.61.209, Pacific J. Math. 61 (1975), no. 1, 209–217. MR0410685DOI10.2140/pjm.1975.61.209
- Wage M.L., Fleissner W.G., Reed G.M., 10.1090/S0002-9904-1976-14150-X, Bull. Amer. Math. Soc. 82 (1976), no. 4, 635–639. MR0410665DOI10.1090/S0002-9904-1976-14150-X
- Tall F.D., First Countable Space with -Calibre May or May not be Separable, Set-theoretic Topology, Academic Press, New York, 1977. MR0500795
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.