Separable -free modules with almost trivial dual
Daniel Herden; Héctor Gabriel Salazar Pedroza
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 1, page 7-20
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHerden, Daniel, and Pedroza, Héctor Gabriel Salazar. "Separable $\aleph _k$-free modules with almost trivial dual." Commentationes Mathematicae Universitatis Carolinae 57.1 (2016): 7-20. <http://eudml.org/doc/276790>.
@article{Herden2016,
abstract = {An $R$-module $M$ has an almost trivial dual if there are no epimorphisms from $M$ to the free $R$-module of countable infinite rank $R^\{(\omega )\}$. For every natural number $k>1$, we construct arbitrarily large separable $\aleph _k$-free $R$-modules with almost trivial dual by means of Shelah’s Easy Black Box, which is a combinatorial principle provable in ZFC.},
author = {Herden, Daniel, Pedroza, Héctor Gabriel Salazar},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {prediction principles; almost free modules; dual modules},
language = {eng},
number = {1},
pages = {7-20},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Separable $\aleph _k$-free modules with almost trivial dual},
url = {http://eudml.org/doc/276790},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Herden, Daniel
AU - Pedroza, Héctor Gabriel Salazar
TI - Separable $\aleph _k$-free modules with almost trivial dual
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 1
SP - 7
EP - 20
AB - An $R$-module $M$ has an almost trivial dual if there are no epimorphisms from $M$ to the free $R$-module of countable infinite rank $R^{(\omega )}$. For every natural number $k>1$, we construct arbitrarily large separable $\aleph _k$-free $R$-modules with almost trivial dual by means of Shelah’s Easy Black Box, which is a combinatorial principle provable in ZFC.
LA - eng
KW - prediction principles; almost free modules; dual modules
UR - http://eudml.org/doc/276790
ER -
References
top- Corner A.L.S., Göbel R., Prescribing endomorphism algebras – A unified treatment, Proc. London Math. Soc. (3) 50 (1985), 447–479. MR0779399
- Dugas M., Göbel R., Endomorphism rings of separable torsion-free abelian groups, Houston J. Math. 11 (1985), 471–483. MR0837986
- Eklof P.C., Mekler A.H., Almost Free Modules, revised ed., North-Holland, New York, 2002. MR1914985
- Fuchs L., Infinite Abelian Groups – Vol. 1 & 2, Academic Press, New York, 1970, 1973.
- Göbel R., Herden D., Salazar Pedroza H.G., 10.4064/fm231-1-3, Fund. Math. 231 (2015), 39–55. MR3361234DOI10.4064/fm231-1-3
- Göbel R., Herden D., Shelah S., 10.4171/JEMS/475, J. Eur. Math. Soc. 16 (2014), no. 9, 1775–1816. MR3273308DOI10.4171/JEMS/475
- Göbel R., Shelah S., 10.1007/s00025-009-0382-0, Results Math. 54 (2009), 53–64. MR2529626DOI10.1007/s00025-009-0382-0
- Göbel R., Shelah S., Strüngmann L., 10.1017/S0017089512000614, Glasgow J. Math. 55 (2013), 369–380. MR3040868DOI10.1017/S0017089512000614
- Göbel R., Trlifaj J., Approximations and Endomorphism Algebras of Modules – Vol. 1 & 2, Expositions in Mathematics, 41, Walter de Gruyter, Berlin, 2012.
- Griffith P.A., 10.1093/qmath/23.4.417, Quart. J. Math. Oxford Ser. (2) 23 (1972), 417–425. MR0325804DOI10.1093/qmath/23.4.417
- Herden D., Constructing -free structures, Habilitationsschrift, University of Duisburg-Essen, 2013.
- Hill P., 10.1090/S0002-9947-1974-0352294-8, Trans. Amer. Math. Soc. 196 (1974), 191–201. MR0352294DOI10.1090/S0002-9947-1974-0352294-8
- Jech T., Set Theory, Monographs in Mathematics, Springer, Berlin, 2002. Zbl1007.03002MR1940513
- Salazar Pedroza H.G., Combinatorial principles and -free modules, PhD Thesis, University of Duisburg-Essen, 2012.
- Shelah S., -free abelian groups with no non-zero homomorphisms to , Cubo 9 (2007), 59–79. MR2354353
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.