Separable k -free modules with almost trivial dual

Daniel Herden; Héctor Gabriel Salazar Pedroza

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 1, page 7-20
  • ISSN: 0010-2628

Abstract

top
An R -module M has an almost trivial dual if there are no epimorphisms from M to the free R -module of countable infinite rank R ( ω ) . For every natural number k > 1 , we construct arbitrarily large separable k -free R -modules with almost trivial dual by means of Shelah’s Easy Black Box, which is a combinatorial principle provable in ZFC.

How to cite

top

Herden, Daniel, and Pedroza, Héctor Gabriel Salazar. "Separable $\aleph _k$-free modules with almost trivial dual." Commentationes Mathematicae Universitatis Carolinae 57.1 (2016): 7-20. <http://eudml.org/doc/276790>.

@article{Herden2016,
abstract = {An $R$-module $M$ has an almost trivial dual if there are no epimorphisms from $M$ to the free $R$-module of countable infinite rank $R^\{(\omega )\}$. For every natural number $k>1$, we construct arbitrarily large separable $\aleph _k$-free $R$-modules with almost trivial dual by means of Shelah’s Easy Black Box, which is a combinatorial principle provable in ZFC.},
author = {Herden, Daniel, Pedroza, Héctor Gabriel Salazar},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {prediction principles; almost free modules; dual modules},
language = {eng},
number = {1},
pages = {7-20},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Separable $\aleph _k$-free modules with almost trivial dual},
url = {http://eudml.org/doc/276790},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Herden, Daniel
AU - Pedroza, Héctor Gabriel Salazar
TI - Separable $\aleph _k$-free modules with almost trivial dual
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 1
SP - 7
EP - 20
AB - An $R$-module $M$ has an almost trivial dual if there are no epimorphisms from $M$ to the free $R$-module of countable infinite rank $R^{(\omega )}$. For every natural number $k>1$, we construct arbitrarily large separable $\aleph _k$-free $R$-modules with almost trivial dual by means of Shelah’s Easy Black Box, which is a combinatorial principle provable in ZFC.
LA - eng
KW - prediction principles; almost free modules; dual modules
UR - http://eudml.org/doc/276790
ER -

References

top
  1. Corner A.L.S., Göbel R., Prescribing endomorphism algebras – A unified treatment, Proc. London Math. Soc. (3) 50 (1985), 447–479. MR0779399
  2. Dugas M., Göbel R., Endomorphism rings of separable torsion-free abelian groups, Houston J. Math. 11 (1985), 471–483. MR0837986
  3. Eklof P.C., Mekler A.H., Almost Free Modules, revised ed., North-Holland, New York, 2002. MR1914985
  4. Fuchs L., Infinite Abelian Groups – Vol. 1 & 2, Academic Press, New York, 1970, 1973. 
  5. Göbel R., Herden D., Salazar Pedroza H.G., 10.4064/fm231-1-3, Fund. Math. 231 (2015), 39–55. MR3361234DOI10.4064/fm231-1-3
  6. Göbel R., Herden D., Shelah S., 10.4171/JEMS/475, J. Eur. Math. Soc. 16 (2014), no. 9, 1775–1816. MR3273308DOI10.4171/JEMS/475
  7. Göbel R., Shelah S., 10.1007/s00025-009-0382-0, Results Math. 54 (2009), 53–64. MR2529626DOI10.1007/s00025-009-0382-0
  8. Göbel R., Shelah S., Strüngmann L., 10.1017/S0017089512000614, Glasgow J. Math. 55 (2013), 369–380. MR3040868DOI10.1017/S0017089512000614
  9. Göbel R., Trlifaj J., Approximations and Endomorphism Algebras of Modules – Vol. 1 & 2, Expositions in Mathematics, 41, Walter de Gruyter, Berlin, 2012. 
  10. Griffith P.A., 10.1093/qmath/23.4.417, Quart. J. Math. Oxford Ser. (2) 23 (1972), 417–425. MR0325804DOI10.1093/qmath/23.4.417
  11. Herden D., Constructing k -free structures, Habilitationsschrift, University of Duisburg-Essen, 2013. 
  12. Hill P., 10.1090/S0002-9947-1974-0352294-8, Trans. Amer. Math. Soc. 196 (1974), 191–201. MR0352294DOI10.1090/S0002-9947-1974-0352294-8
  13. Jech T., Set Theory, Monographs in Mathematics, Springer, Berlin, 2002. Zbl1007.03002MR1940513
  14. Salazar Pedroza H.G., Combinatorial principles and k -free modules, PhD Thesis, University of Duisburg-Essen, 2012. 
  15. Shelah S., n -free abelian groups with no non-zero homomorphisms to , Cubo 9 (2007), 59–79. MR2354353

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.