A pure smoothness condition for Radó’s theorem for -analytic functions
Abtin Daghighi; Frank Wikström
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 1, page 57-62
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDaghighi, Abtin, and Wikström, Frank. "A pure smoothness condition for Radó’s theorem for $\alpha $-analytic functions." Czechoslovak Mathematical Journal 66.1 (2016): 57-62. <http://eudml.org/doc/276792>.
@article{Daghighi2016,
abstract = {Let $\Omega \subset \mathbb \{C\}^n$ be a bounded, simply connected $\mathbb \{C\}$-convex domain. Let $\alpha \in \mathbb \{Z\}_+^n$ and let $f$ be a function on $\Omega $ which is separately $C^\{2\alpha _j-1\}$-smooth with respect to $z_j$ (by which we mean jointly $C^\{2 \alpha _j-1\}$-smooth with respect to $\mathop \{\rm Re\} z_j$, $ \mathop \{\rm Im\} z_j$). If $f$ is $\alpha $-analytic on $\Omega \setminus f^\{-1\}(0)$, then $f$ is $\alpha $-analytic on $\Omega $. The result is well-known for the case $\alpha _i=1$, $1\le i\le n$, even when $f$ a priori is only known to be continuous.},
author = {Daghighi, Abtin, Wikström, Frank},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\alpha $-analytic function; polyanalytic function; zero set; Radó’s theorem},
language = {eng},
number = {1},
pages = {57-62},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A pure smoothness condition for Radó’s theorem for $\alpha $-analytic functions},
url = {http://eudml.org/doc/276792},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Daghighi, Abtin
AU - Wikström, Frank
TI - A pure smoothness condition for Radó’s theorem for $\alpha $-analytic functions
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 57
EP - 62
AB - Let $\Omega \subset \mathbb {C}^n$ be a bounded, simply connected $\mathbb {C}$-convex domain. Let $\alpha \in \mathbb {Z}_+^n$ and let $f$ be a function on $\Omega $ which is separately $C^{2\alpha _j-1}$-smooth with respect to $z_j$ (by which we mean jointly $C^{2 \alpha _j-1}$-smooth with respect to $\mathop {\rm Re} z_j$, $ \mathop {\rm Im} z_j$). If $f$ is $\alpha $-analytic on $\Omega \setminus f^{-1}(0)$, then $f$ is $\alpha $-analytic on $\Omega $. The result is well-known for the case $\alpha _i=1$, $1\le i\le n$, even when $f$ a priori is only known to be continuous.
LA - eng
KW - $\alpha $-analytic function; polyanalytic function; zero set; Radó’s theorem
UR - http://eudml.org/doc/276792
ER -
References
top- Avanissian, V., Traore, A., Extension des théorèmes de Hartogs et de Lindelöf aux fonctions polyanalytiques de plusieurs variables, French C. R. Acad. Sci., Paris Sér. A-B 291 (1980), A263--A265. (1980) MR0591746
- Avanissian, V., Traore, A., Sur les fonctions polyanalytiques de plusiers variables, C. R. Acad. Sci., Paris Sér. French A-B 286 (1978), A743--A746. (1978) MR0589396
- Axler, S., Bourdon, P., Ramey, W., Harmonic Function Theory, Graduate Texts in Mathematics 137 Springer, New York (1992). (1992) MR1184139
- Balk, M. B., Polyanalytic functions and their generalizations, Complex analysis I. Encycl. Math. Sci. 85 197-253 (1997). (1997)
- Balk, M. B., A uniqueness theorem for polyanalytic functions, Izv. Akad. Nauk Armjan. SSR Ser. Fiz.-Mat. Nauk Russian 18 (1965), 3-14. (1965) MR0190350
- Cartan, H., 10.1007/BF01343105, French Math. Ann. 125 (1952), 49-50. (1952) MR0050026DOI10.1007/BF01343105
- Chesnokov, I. Y., On Removable Singularities of the Solution of Linear Differential Equations, Russian Dissertation, MGU Moskva (1991). (1991)
- Chesnokov, I. Y., Removable singularities for solutions of linear partial differential equations, Mosc. Univ. Math. Bull. 45 37-38 (1990), translation from Vestn. Mosk. Univ., Ser. I 1990 (1990), 66-68 Russian. (1990) MR1086608
- Harvey, R., Polking, J., 10.1007/BF02838327, Acta Math. 125 (1970), 39-56. (1970) MR0279461DOI10.1007/BF02838327
- Král, J., Extension results of the Radó type, Rev. Roum. Math. Pures Appl. 36 (1991), 71-76. (1991) MR1144536
- Král, J., 10.1112/jlms/s2-28.1.62, J. London Math. Soc. 28 (1983), 62-70. (1983) MR0703465DOI10.1112/jlms/s2-28.1.62
- Krantz, S. G., Function Theory of Several Complex Variables, American Mathematical Society Chelsea Publishing, Providence (2001). (2001) Zbl1087.32001MR1846625
- Pokrovskii, A. V., 10.1007/s10958-009-9485-0, J. Math. Sci. 160 (2009), 61-83. (2009) Zbl1183.35144MR2676340DOI10.1007/s10958-009-9485-0
- Radó, T., 10.1007/BF01188068, Math. Z. 20 (1924), 1-6 German. (1924) MR1544659DOI10.1007/BF01188068
- Tarkhanov, N. N., The Analysis of Solutions of Elliptic Equations, Kluwer Academic Publishers Dordrecht (1997). (1997) MR1447439
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.