A pure smoothness condition for Radó’s theorem for α -analytic functions

Abtin Daghighi; Frank Wikström

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 1, page 57-62
  • ISSN: 0011-4642

Abstract

top
Let Ω n be a bounded, simply connected -convex domain. Let α + n and let f be a function on Ω which is separately C 2 α j - 1 -smooth with respect to z j (by which we mean jointly C 2 α j - 1 -smooth with respect to Re z j , Im z j ). If f is α -analytic on Ω f - 1 ( 0 ) , then f is α -analytic on Ω . The result is well-known for the case α i = 1 , 1 i n , even when f a priori is only known to be continuous.

How to cite

top

Daghighi, Abtin, and Wikström, Frank. "A pure smoothness condition for Radó’s theorem for $\alpha $-analytic functions." Czechoslovak Mathematical Journal 66.1 (2016): 57-62. <http://eudml.org/doc/276792>.

@article{Daghighi2016,
abstract = {Let $\Omega \subset \mathbb \{C\}^n$ be a bounded, simply connected $\mathbb \{C\}$-convex domain. Let $\alpha \in \mathbb \{Z\}_+^n$ and let $f$ be a function on $\Omega $ which is separately $C^\{2\alpha _j-1\}$-smooth with respect to $z_j$ (by which we mean jointly $C^\{2 \alpha _j-1\}$-smooth with respect to $\mathop \{\rm Re\} z_j$, $ \mathop \{\rm Im\} z_j$). If $f$ is $\alpha $-analytic on $\Omega \setminus f^\{-1\}(0)$, then $f$ is $\alpha $-analytic on $\Omega $. The result is well-known for the case $\alpha _i=1$, $1\le i\le n$, even when $f$ a priori is only known to be continuous.},
author = {Daghighi, Abtin, Wikström, Frank},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\alpha $-analytic function; polyanalytic function; zero set; Radó’s theorem},
language = {eng},
number = {1},
pages = {57-62},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A pure smoothness condition for Radó’s theorem for $\alpha $-analytic functions},
url = {http://eudml.org/doc/276792},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Daghighi, Abtin
AU - Wikström, Frank
TI - A pure smoothness condition for Radó’s theorem for $\alpha $-analytic functions
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 57
EP - 62
AB - Let $\Omega \subset \mathbb {C}^n$ be a bounded, simply connected $\mathbb {C}$-convex domain. Let $\alpha \in \mathbb {Z}_+^n$ and let $f$ be a function on $\Omega $ which is separately $C^{2\alpha _j-1}$-smooth with respect to $z_j$ (by which we mean jointly $C^{2 \alpha _j-1}$-smooth with respect to $\mathop {\rm Re} z_j$, $ \mathop {\rm Im} z_j$). If $f$ is $\alpha $-analytic on $\Omega \setminus f^{-1}(0)$, then $f$ is $\alpha $-analytic on $\Omega $. The result is well-known for the case $\alpha _i=1$, $1\le i\le n$, even when $f$ a priori is only known to be continuous.
LA - eng
KW - $\alpha $-analytic function; polyanalytic function; zero set; Radó’s theorem
UR - http://eudml.org/doc/276792
ER -

References

top
  1. Avanissian, V., Traore, A., Extension des théorèmes de Hartogs et de Lindelöf aux fonctions polyanalytiques de plusieurs variables, French C. R. Acad. Sci., Paris Sér. A-B 291 (1980), A263--A265. (1980) MR0591746
  2. Avanissian, V., Traore, A., Sur les fonctions polyanalytiques de plusiers variables, C. R. Acad. Sci., Paris Sér. French A-B 286 (1978), A743--A746. (1978) MR0589396
  3. Axler, S., Bourdon, P., Ramey, W., Harmonic Function Theory, Graduate Texts in Mathematics 137 Springer, New York (1992). (1992) MR1184139
  4. Balk, M. B., Polyanalytic functions and their generalizations, Complex analysis I. Encycl. Math. Sci. 85 197-253 (1997). (1997) 
  5. Balk, M. B., A uniqueness theorem for polyanalytic functions, Izv. Akad. Nauk Armjan. SSR Ser. Fiz.-Mat. Nauk Russian 18 (1965), 3-14. (1965) MR0190350
  6. Cartan, H., 10.1007/BF01343105, French Math. Ann. 125 (1952), 49-50. (1952) MR0050026DOI10.1007/BF01343105
  7. Chesnokov, I. Y., On Removable Singularities of the Solution of Linear Differential Equations, Russian Dissertation, MGU Moskva (1991). (1991) 
  8. Chesnokov, I. Y., Removable singularities for solutions of linear partial differential equations, Mosc. Univ. Math. Bull. 45 37-38 (1990), translation from Vestn. Mosk. Univ., Ser. I 1990 (1990), 66-68 Russian. (1990) MR1086608
  9. Harvey, R., Polking, J., 10.1007/BF02838327, Acta Math. 125 (1970), 39-56. (1970) MR0279461DOI10.1007/BF02838327
  10. Král, J., Extension results of the Radó type, Rev. Roum. Math. Pures Appl. 36 (1991), 71-76. (1991) MR1144536
  11. Král, J., 10.1112/jlms/s2-28.1.62, J. London Math. Soc. 28 (1983), 62-70. (1983) MR0703465DOI10.1112/jlms/s2-28.1.62
  12. Krantz, S. G., Function Theory of Several Complex Variables, American Mathematical Society Chelsea Publishing, Providence (2001). (2001) Zbl1087.32001MR1846625
  13. Pokrovskii, A. V., 10.1007/s10958-009-9485-0, J. Math. Sci. 160 (2009), 61-83. (2009) Zbl1183.35144MR2676340DOI10.1007/s10958-009-9485-0
  14. Radó, T., 10.1007/BF01188068, Math. Z. 20 (1924), 1-6 German. (1924) MR1544659DOI10.1007/BF01188068
  15. Tarkhanov, N. N., The Analysis of Solutions of Elliptic Equations, Kluwer Academic Publishers Dordrecht (1997). (1997) MR1447439

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.