Packing constant for Cesàro-Orlicz sequence spaces
Zhen-Hua Ma; Li-Ning Jiang; Qiao-Ling Xin
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 1, page 13-25
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMa, Zhen-Hua, Jiang, Li-Ning, and Xin, Qiao-Ling. "Packing constant for Cesàro-Orlicz sequence spaces." Czechoslovak Mathematical Journal 66.1 (2016): 13-25. <http://eudml.org/doc/276806>.
@article{Ma2016,
abstract = {The packing constant is an important and interesting geometric parameter of Banach spaces. Inspired by the packing constant for Orlicz sequence spaces, the main purpose of this paper is calculating the Kottman constant and the packing constant of the Cesàro-Orlicz sequence spaces ($\{\rm ces\}_\{\phi \}$) defined by an Orlicz function $\phi $ equipped with the Luxemburg norm. In order to compute the constants, the paper gives two formulas. On the base of these formulas one can easily obtain the packing constant for the Cesàro sequence space $\{\rm ces\}_\{p\}$ and some other sequence spaces. Finally, a new constant $\widetilde\{D\}(X)$, which seems to be relevant to the packing constant, is given.},
author = {Ma, Zhen-Hua, Jiang, Li-Ning, Xin, Qiao-Ling},
journal = {Czechoslovak Mathematical Journal},
keywords = {packing constant; Cesàro sequence space; Cesàro-Orlicz sequence space},
language = {eng},
number = {1},
pages = {13-25},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Packing constant for Cesàro-Orlicz sequence spaces},
url = {http://eudml.org/doc/276806},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Ma, Zhen-Hua
AU - Jiang, Li-Ning
AU - Xin, Qiao-Ling
TI - Packing constant for Cesàro-Orlicz sequence spaces
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 13
EP - 25
AB - The packing constant is an important and interesting geometric parameter of Banach spaces. Inspired by the packing constant for Orlicz sequence spaces, the main purpose of this paper is calculating the Kottman constant and the packing constant of the Cesàro-Orlicz sequence spaces (${\rm ces}_{\phi }$) defined by an Orlicz function $\phi $ equipped with the Luxemburg norm. In order to compute the constants, the paper gives two formulas. On the base of these formulas one can easily obtain the packing constant for the Cesàro sequence space ${\rm ces}_{p}$ and some other sequence spaces. Finally, a new constant $\widetilde{D}(X)$, which seems to be relevant to the packing constant, is given.
LA - eng
KW - packing constant; Cesàro sequence space; Cesàro-Orlicz sequence space
UR - http://eudml.org/doc/276806
ER -
References
top- Burlak, J. A. C., Rankin, R. A., Robertson, A. P., 10.1017/S2040618500033797, Proc. Glasg. Math. Assoc. 4 (1958), 22-25. (1958) MR0119151DOI10.1017/S2040618500033797
- Chen, S., Geometry of Orlicz Spaces, With a preface by Julian Musielak Dissertationes Math. (Rozprawy Mat.) 356 (1996), 204. (1996) Zbl1089.46500MR1410390
- Cui, Y., Hudzik, H., 10.1016/S0362-546X(01)00389-3, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 47 (2001), 2695-2702. (2001) Zbl1042.46505MR1972393DOI10.1016/S0362-546X(01)00389-3
- Cui, Y., Hudzik, H., On the banach-saks and weak banach-saks properties of some banach sequence spaces, Acta Sci. Math. 65 (1999), 179-187. (1999) MR1702144
- Cui, Y., Hudzik, H., Petrot, N., Suantai, S., Szymaszkiewicz, A., 10.1007/BF02829808, Proc. Indian Acad. Sci., Math. Sci. 115 (2005), 461-476. (2005) MR2184206DOI10.1007/BF02829808
- Foralewski, P., Hudzik, H., Szymaszkiewicz, A., Some remarks on cesàro-orlicz sequence spaces, Math. Inequal. Appl. 13 (2010), 363-386. (2010) Zbl1198.46017MR2662025
- Foralewski, P., Hudzik, H., Szymaszkiewicz, A., 10.1016/j.jmaa.2008.04.016, J. Math. Anal. Appl. 345 (2008), 410-419. (2008) Zbl1155.46007MR2422661DOI10.1016/j.jmaa.2008.04.016
- Hudzik, H., Every nonreflexive banach lattice has the packing constant equal to , Collect. Math. 44 (1993), 129-134. (1993) MR1280732
- Kottman, C. A., 10.1090/S0002-9947-1970-0265918-7, Trans. Am. Math. Soc. 150 (1970), 565-576. (1970) MR0265918DOI10.1090/S0002-9947-1970-0265918-7
- Kubiak, D., 10.1016/j.jmaa.2008.08.022, J. Math. Anal. Appl. 349 (2009), 291-296. (2009) Zbl1160.46013MR2455750DOI10.1016/j.jmaa.2008.08.022
- Lee, P. Y., Cesàro sequence spaces, Math. Chron. 13 (1984), 29-45. (1984) Zbl0568.46006MR0769798
- Lim, S. K., Lee, P. Y., An orlicz extension of cesàro sequence spaces, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 28 (1988), 117-128. (1988) MR0988964
- Luxemburg, W. A. J., Banach Function Spaces, Thesis Technische Hogeschool te Delft (1955). (1955) MR0072440
- Ma, Z., Cui, Y., Some important geometric properties in cesàro-orlicz sequence spaces, Adv. Math., Beijing 42 (2013), 348-354. (2013) Zbl1299.46017MR3144140
- Maligranda, L., Orlicz Spaces and Interpolation, Seminars in Mathematics 5 Univ. Estadual de Campinas, Dep. de Matemática, Campinas (1989). (1989) Zbl0874.46022MR2264389
- Maligranda, L., Petrot, N., Suantai, S., 10.1016/j.jmaa.2006.02.085, J. Math. Anal. Appl. 326 (2007), 312-331. (2007) MR2277785DOI10.1016/j.jmaa.2006.02.085
- Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034 Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434
- Rankin, R. A., 10.1017/S2040618500033220, Proc. Glasg. Math. Assoc. 2 (1955), 145-146. (1955) MR0074014DOI10.1017/S2040618500033220
- Saejung, S., 10.1016/j.jmaa.2010.01.029, J. Math. Anal. Appl. 366 (2010), 530-537. (2010) Zbl1203.46008MR2600499DOI10.1016/j.jmaa.2010.01.029
- Webb, J. R. L., Zhao, W., 10.1112/blms/22.5.471, Bull. Lond. Math. Soc. 22 (1990), 471-477. (1990) MR1082019DOI10.1112/blms/22.5.471
- Wu, C. X., Lin, P., Piao, Q. Y., Lee, P. Y., Sequence Space and Its Application, Harbin Institute of Technology Press Chinese (2001). (2001)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.