Stabilization of homogeneous polynomial systems in the plane
Hamadi Jerbi; Thouraya Kharrat; Khaled Sioud
Kybernetika (2016)
- Volume: 52, Issue: 1, page 131-152
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topJerbi, Hamadi, Kharrat, Thouraya, and Sioud, Khaled. "Stabilization of homogeneous polynomial systems in the plane." Kybernetika 52.1 (2016): 131-152. <http://eudml.org/doc/276817>.
@article{Jerbi2016,
abstract = {In this paper, we study the problem of stabilization via homogeneous feedback of single-input homogeneous polynomial systems in the plane. We give a complete classification of systems for which there exists a homogeneous stabilizing feedback that is smooth on $\mathbb \{R\}^2 \setminus \lbrace (0,0)\rbrace $ and preserve the homogeneity of the closed loop system. Our results are essentially based on Theorem of Hahn in which the author gives necessary and sufficient conditions of stability of homogeneous systems in the plane.},
author = {Jerbi, Hamadi, Kharrat, Thouraya, Sioud, Khaled},
journal = {Kybernetika},
keywords = {polynomial system; control system; homogeneous feedback; stabilization},
language = {eng},
number = {1},
pages = {131-152},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stabilization of homogeneous polynomial systems in the plane},
url = {http://eudml.org/doc/276817},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Jerbi, Hamadi
AU - Kharrat, Thouraya
AU - Sioud, Khaled
TI - Stabilization of homogeneous polynomial systems in the plane
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 1
SP - 131
EP - 152
AB - In this paper, we study the problem of stabilization via homogeneous feedback of single-input homogeneous polynomial systems in the plane. We give a complete classification of systems for which there exists a homogeneous stabilizing feedback that is smooth on $\mathbb {R}^2 \setminus \lbrace (0,0)\rbrace $ and preserve the homogeneity of the closed loop system. Our results are essentially based on Theorem of Hahn in which the author gives necessary and sufficient conditions of stability of homogeneous systems in the plane.
LA - eng
KW - polynomial system; control system; homogeneous feedback; stabilization
UR - http://eudml.org/doc/276817
ER -
References
top- Artstein, Z., 10.1016/0362-546x(83)90049-4, Nonlinear Analysis, TMA, 7 (1983), 1163-1173. Zbl0525.93053MR0721403DOI10.1016/0362-546x(83)90049-4
- Coron, J. M., Praly, L., 10.1016/0167-6911(91)90034-c, Systems Control Lett. 17 (1991), 89-104. Zbl0747.93072MR1120754DOI10.1016/0167-6911(91)90034-c
- Hahn, W., 10.1007/978-3-642-50085-5, Springer-Verlag 1967. Zbl0189.38503MR0223668DOI10.1007/978-3-642-50085-5
- Hermes, H., 10.1016/0167-6911(94)00035-t, Systems Control Lett. 24 (1995), 7-11. Zbl0877.93088MR1307121DOI10.1016/0167-6911(94)00035-t
- Jerbi, H., Maaloum, A. Ould, 10.1016/j.sysconle.2007.04.002, Systems Control Lett. 56 (2007), 611-617. MR2344649DOI10.1016/j.sysconle.2007.04.002
- Jerbi, H., Kharrat, T., 10.1016/s0167-6911(02)00248-7, Systems Control Lett. 48 (2003), 87-99. Zbl1097.93033MR2011869DOI10.1016/s0167-6911(02)00248-7
- Kawski, M., Homogeneous stabilizing feedback laws., Control-Theory Advanced Technol. 6 (1990), 497-516. MR1092775
- Rosier, L., 10.1016/0167-6911(92)90078-7, Systems Control Lett. 19 (1992), 467-473. Zbl0762.34032MR1195304DOI10.1016/0167-6911(92)90078-7
- Massera, J. L., 10.2307/1969955, Ann. Math. 64 (1956), 182-206. MR0079179DOI10.2307/1969955
- Sontag, E. D., 10.1016/0167-6911(89)90028-5, Systems Control Lett. 13 (1989), 117-123. Zbl0684.93063MR1014237DOI10.1016/0167-6911(89)90028-5
- Tsinias, J., 10.1016/0362-546x(88)90060-0, Nonlinear Analysis, TMA 12 (1988), 1283-1296. Zbl0662.93055MR0969506DOI10.1016/0362-546x(88)90060-0
- Tsinias, J., 10.1007/bf02551276, Math. Control, Signals Systems 2 (1989), 343-357. Zbl0688.93048MR1015672DOI10.1007/bf02551276
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.