Kannan-type cyclic contraction results in -Menger space
Binayak S. Choudhury; Samir Kumar BHANDARI
Mathematica Bohemica (2016)
- Volume: 141, Issue: 1, page 37-58
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topChoudhury, Binayak S., and BHANDARI, Samir Kumar. "Kannan-type cyclic contraction results in $2$-Menger space." Mathematica Bohemica 141.1 (2016): 37-58. <http://eudml.org/doc/276821>.
@article{Choudhury2016,
abstract = {In this paper we establish Kannan-type cyclic contraction results in probabilistic 2-metric spaces. We use two different types of $t$-norm in our theorems. In our first theorem we use a Hadzic-type $t$-norm. We use the minimum $t$-norm in our second theorem. We prove our second theorem by different arguments than the first theorem. A control function is used in our second theorem. These results generalize some existing results in probabilistic 2-metric spaces. Our results are illustrated with an example.},
author = {Choudhury, Binayak S., BHANDARI, Samir Kumar},
journal = {Mathematica Bohemica},
keywords = {$2$-Menger space; Cauchy sequence; fixed point; $\phi $-function; $\psi $-function; cyclic contraction},
language = {eng},
number = {1},
pages = {37-58},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Kannan-type cyclic contraction results in $2$-Menger space},
url = {http://eudml.org/doc/276821},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Choudhury, Binayak S.
AU - BHANDARI, Samir Kumar
TI - Kannan-type cyclic contraction results in $2$-Menger space
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 1
SP - 37
EP - 58
AB - In this paper we establish Kannan-type cyclic contraction results in probabilistic 2-metric spaces. We use two different types of $t$-norm in our theorems. In our first theorem we use a Hadzic-type $t$-norm. We use the minimum $t$-norm in our second theorem. We prove our second theorem by different arguments than the first theorem. A control function is used in our second theorem. These results generalize some existing results in probabilistic 2-metric spaces. Our results are illustrated with an example.
LA - eng
KW - $2$-Menger space; Cauchy sequence; fixed point; $\phi $-function; $\psi $-function; cyclic contraction
UR - http://eudml.org/doc/276821
ER -
References
top- Banach, S., 10.4064/fm-3-1-133-181, Fundam. Math. 3 French (1922), 133-181. (1922) DOI10.4064/fm-3-1-133-181
- Chang, S.-S., Huang, N. J., On the generalized 2-metric spaces and probabilistic 2-metric spaces with applications to fixed point theory, Math. Jap. 34 (1989), 885-900. (1989) Zbl0692.54030MR1025044
- Choudhury, B. S., Das, K., 10.1016/j.chaos.2009.04.020, Chaos Solitons Fractals 42 (2009), 3058-3063. (2009) Zbl1198.54072MR2560014DOI10.1016/j.chaos.2009.04.020
- Choudhury, B. S., Das, K., 10.4134/CKMS.2009.24.4.529, Commun. Korean Math. Soc. 24 (2009), 529-537. (2009) Zbl1231.54020MR2568990DOI10.4134/CKMS.2009.24.4.529
- Choudhury, B. S., Das, K., 10.1007/s10114-007-6509-x, Acta Math. Sin., Engl. Ser. 24 (2008), 1379-1386. (2008) Zbl1155.54026MR2438308DOI10.1007/s10114-007-6509-x
- Choudhury, B. S., Das, K., Bhandari, S. K., A fixed point theorem in -Menger space using a control function, Bull. Calcutta Math. Soc. 104 (2012), 21-30. (2012) MR3088824
- Choudhury, B. S., Das, K., Bhandari, S. K., Cyclic contraction result in -Menger space, Bull. Int. Math. Virtual Inst. 2 (2012), 223-234. (2012) MR3159041
- Choudhury, B. S., Das, K., Bhandari, S. K., A fixed point theorem for Kannan type mappings in -Menger space using a control function, Bull. Math. Anal. Appl. 3 (2011), 141-148. (2011) Zbl1314.47076MR2955353
- Choudhury, B. S., Das, K., Bhandari, S. K., A generalized cyclic -contraction principle in Menger spaces using a control function, Int. J. Appl. Math. 24 (2011), 663-673. (2011) MR2931524
- Choudhury, B. S., Das, K., Bhandari, S. K., Fixed point theorem for mappings with cyclic contraction in Menger spaces, Int. J. Pure Appl. Sci. Technol. 4 (2011), 1-9. (2011) MR3001859
- Connell, E. H., 10.1090/S0002-9939-1959-0110093-3, Proc. Am. Math. Soc. 10 (1959), 974-979. (1959) Zbl0163.17705MR0110093DOI10.1090/S0002-9939-1959-0110093-3
- Dutta, P. N., Choudhury, B. S., 10.1007/s10496-010-0110-3, Anal. Theory Appl. 26 (2010), 110-121. (2010) Zbl1224.54091MR2653705DOI10.1007/s10496-010-0110-3
- G{ä}hler, S., 10.1002/mana.19640280309, Math. Nachr. 28 German (1965), 235-244. (1965) Zbl0142.39804MR0178452DOI10.1002/mana.19640280309
- G{ä}hler, S., 10.1002/mana.19630260109, Math. Nachr. 26 German (1963), 115-148. (1963) Zbl0117.16003MR0162224DOI10.1002/mana.19630260109
- Gole{ţ}, I., A fixed point theorem in probabilistic 2-metric spaces, Inst. Politehn. Traian Vuia Timişoara Lucrăr. Sem. Mat. Fiz. (1988), 21-26. (1988) MR1221431
- Had{ž}i{ć}, O., A fixed point theorem for multivalued mappings in -Menger spaces, Zb. Rad., Prir.-Mat. Fak., Univ. Novom Sadu, Ser. Mat. 24 (1994), 1-7. (1994) Zbl0897.54036
- Hadži{ć}, O., Pap, E., Fixed Point Theory in Probabilistic Metric Spaces, Mathematics and Its Applications 536 Kluwer Academic Publishers, Dordrecht (2001). (2001) MR1896451
- Janos, L., 10.1090/S0002-9939-1976-0425936-3, Proc. Am. Math. Soc. 61 (1976), 171-175. (1976) Zbl0364.54022MR0425936DOI10.1090/S0002-9939-1976-0425936-3
- Kada, O., Suzuki, T., Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Jap. 44 (1996), 381-391. (1996) Zbl0897.54029MR1416281
- Kannan, R., 10.2307/2316437, Am. Math. Mon. 76 (1969), 405-408. (1969) Zbl0179.28203MR0257838DOI10.2307/2316437
- Kannan, R., Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), Article No. 11, 71-76. (1968) Zbl0209.27104MR0257837
- Karpagam, S., Agrawal, S., 10.1016/j.na.2010.07.026, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 1040-1046. (2011) Zbl1206.54047MR2746787DOI10.1016/j.na.2010.07.026
- Khan, M. S., On the convergence of sequences of fixed points in 2-metric spaces, Indian J. Pure Appl. Math. 10 (1979), 1062-1067. (1979) Zbl0417.54020MR0547888
- Khan, M. S., Swaleh, M., Sessa, S., 10.1017/S0004972700001659, Bull. Aust. Math. Soc. 30 (1984), 1-9. (1984) Zbl0553.54023MR0753555DOI10.1017/S0004972700001659
- Kikkawa, M., Suzuki, T., Some similarity between contractions and Kannan mappings. {II}, Bull. Kyushu Inst. Technol., Pure Appl. Math. 55 (2008), 1-13. (2008) Zbl1163.54022MR2455257
- Kikkawa, M., Suzuki, T., Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl. (electronic only) 2008 (2008), Article No. 649749, 8 pages. (2008) Zbl1163.54022MR2395313
- Kirk, W. A., Srinivasan, P. S., Veeramani, P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4 (2003), 79-89. (2003) Zbl1052.54032MR2031823
- Lal, S. N., Singh, A. K., 10.1017/S0004972700007887, Bull. Aust. Math. Soc. 18 (1978), 137-143. (1978) Zbl0385.54028MR0645161DOI10.1017/S0004972700007887
- Mihe{ţ}, D., 10.1016/j.na.2009.01.107, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 2734-2738. (2009) Zbl1176.54034MR2532798DOI10.1016/j.na.2009.01.107
- Naidu, S. V. R., 10.1155/S016117120101064X, Int. J. Math. Math. Sci. 28 (2001), 625-636. (2001) Zbl1001.47037MR1892319DOI10.1155/S016117120101064X
- Saha, P. K., Tiwari, R., An alternative proof of Kannan's fixed point theorem in a generalized metric space, News Bull. Calcutta Math. Soc. 31 (2008), 15-18. (2008) Zbl1218.54049MR2682190
- Sastry, K. P. R., Babu, G. V. R., Some fixed point theorems by altering distances between the points, Indian J. Pure Appl. Math. 30 (1999), 641-647. (1999) Zbl0938.47044MR1701042
- Sastry, K. P. R., Naidu, S. V. R., Babu, G. V. R., Naidu, G. A., Generalization of common fixed point theorems for weakly commuting map by altering distances, Tamkang J. Math. 31 (2000), 243-250. (2000) MR1778222
- Schweizer, B., Sklar, A., Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics North-Holland Publishing, New York (1983). (1983) Zbl0546.60010MR0790314
- Sehgal, V. M., Bharucha-Reid, A. T., 10.1007/BF01706080, Math. Syst. Theory 6 (1972), 97-102. (1972) Zbl0244.60004MR0310858DOI10.1007/BF01706080
- Shi, Y., Ren, L., Wang, X., 10.1007/BF02936092, J. Appl. Math. Comput. 13 (2003), 277-286. (2003) Zbl1060.47057MR2000215DOI10.1007/BF02936092
- Shioji, N., Suzuki, T., Takahashi, W., 10.1090/S0002-9939-98-04605-X, Proc. Am. Math. Soc. 126 (1998), 3117-3124. (1998) Zbl0955.54009MR1469434DOI10.1090/S0002-9939-98-04605-X
- Subrahmanyam, P. V., 10.1007/BF01472580, Monatsh. Math. 80 (1975), 325-330. (1975) Zbl0312.54048MR0391065DOI10.1007/BF01472580
- W{ł}odarczyk, K., Plebaniak, R., Banach, A., 10.1016/j.na.2008.04.037, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3332-3341 erratum ibid. 71 3585-3586 (2009). (2009) Zbl1171.54311MR2503079DOI10.1016/j.na.2008.04.037
- W{ł}odarczyk, K., Plebaniak, R., Obczy{ń}ski, C., 10.1016/j.na.2009.07.024, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 794-805. (2010) Zbl1185.54020MR2579346DOI10.1016/j.na.2009.07.024
- Zeng, W. Z., Probabilistic 2-metric spaces, J. Math. Res. Exposition 7 (1987), 241-245. (1987) MR0929343
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.