A General Fixed Point Theorem For Implicit Cyclic Multi-Valued Contraction Mappings

Valeriu Popa

Annales Mathematicae Silesianae (2015)

  • Volume: 29, Issue: 1, page 119-129
  • ISSN: 0860-2107

Abstract

top
In this paper, a general fixed point theorem for cyclic multi-valued mappings satisfying an implicit relation from [19] different from implicit relations used in [13] and [23], generalizing some results from [22], [15], [13], [14], [16], [10] and from other papers, is proved.

How to cite

top

Valeriu Popa. "A General Fixed Point Theorem For Implicit Cyclic Multi-Valued Contraction Mappings." Annales Mathematicae Silesianae 29.1 (2015): 119-129. <http://eudml.org/doc/276825>.

@article{ValeriuPopa2015,
abstract = {In this paper, a general fixed point theorem for cyclic multi-valued mappings satisfying an implicit relation from [19] different from implicit relations used in [13] and [23], generalizing some results from [22], [15], [13], [14], [16], [10] and from other papers, is proved.},
author = {Valeriu Popa},
journal = {Annales Mathematicae Silesianae},
keywords = {fixed point; multi-valued function; cyclical contraction; implicit relation},
language = {eng},
number = {1},
pages = {119-129},
title = {A General Fixed Point Theorem For Implicit Cyclic Multi-Valued Contraction Mappings},
url = {http://eudml.org/doc/276825},
volume = {29},
year = {2015},
}

TY - JOUR
AU - Valeriu Popa
TI - A General Fixed Point Theorem For Implicit Cyclic Multi-Valued Contraction Mappings
JO - Annales Mathematicae Silesianae
PY - 2015
VL - 29
IS - 1
SP - 119
EP - 129
AB - In this paper, a general fixed point theorem for cyclic multi-valued mappings satisfying an implicit relation from [19] different from implicit relations used in [13] and [23], generalizing some results from [22], [15], [13], [14], [16], [10] and from other papers, is proved.
LA - eng
KW - fixed point; multi-valued function; cyclical contraction; implicit relation
UR - http://eudml.org/doc/276825
ER -

References

top
  1. [1] Altun I., Turkoglu D., Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwanese J. Math. 13 (2009), no. 4, 1291–1304. Zbl1194.54055
  2. [2] Altun I., Simsek H., Some fixed point theorems on ordered metric spaces and applications, Fixed Point Theory Appl. 2010, Art. ID 621469, 17 pp. Zbl1197.54053
  3. [3] Aydi H., Jellali M., Karapinar E., Common fixed points for generalized α-implicit contractions in partial metric spaces: Consequences and application, RACSAM–Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. To appear. Zbl1321.54068
  4. [4] Chatterjee S., Fixed point theorems, C.R. Acad. Bulgare Sci. 25 (1972), 727–730. Zbl0274.54033
  5. [5] Gulyaz S., Karapinar E., Coupled fixed point result in partially ordered partial metric spaces through implicit function, Hacet. J. Math. Stat. 42 (2013), no. 4, 347–357. Zbl06313072
  6. [6] Gulyaz S., Karapinar E., Yuce I.S., A coupled coincidence point theorem in partially ordered metric spaces with an implicit relation, Fixed Point Theory Appl. 2013, 2013: 38, 11 pp.[WoS] Zbl1281.54025
  7. [7] Hardy G.E., Rogers T.D., A generalization of a fixed point of Reich, Can. Math. Bull. 16 (1973), no. 2, 201–206.[Crossref] Zbl0266.54015
  8. [8] Kannan R., Some results on fixed points, Bull. Calcutta Math. Soc. 10 (1968), 71–76. Zbl0209.27104
  9. [9] Karapinar E., Fixed point theory for cyclic weak ϕ-contraction, Appl. Math. Lett. 24 (2011), no. 6, 822–825.[WoS][Crossref] Zbl1256.54073
  10. [10] Karapinar E., Erhan I.M., Cyclic contractions and fixed point theorems, Filomat 26 (2012), no. 4, 777–782. Zbl1289.47106
  11. [11] Kirk W.A., Srinivasan P.S., Veeramani P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4 (2003), no. 1, 79–89.[WoS] Zbl1052.54032
  12. [12] Nadler S.B., Multivalued contraction mappings, Pacific J. Math. 20 (1969), no. 2, 457–488. Zbl0187.45002
  13. [13] Nashine H.K., Kadelburg Z., Kumam P., Implicit-relation-type cyclic contractive mappings and applications to integral equations, Abstr. Appl. Anal. 2012, Art. ID 386253, 15 pp.[WoS] Zbl06116383
  14. [14] Păcurar M., Fixed point theory for cyclic Berinde operators, Fixed Point Theory 12 (2011), no. 2, 419–428. Zbl1237.54057
  15. [15] Păcurar M., Rus I.A., Fixed point theory for cyclic φ-contractions, Nonlinear Anal. 72 (2010), 1181–1187. Zbl1191.54042
  16. [16] Petric M.A., Some results concerning cyclical contractive mappings, Gen. Math. 18 (2010), no. 4, 213–226. Zbl1289.54146
  17. [17] Popa V., Some fixed point theorems for implicit contractive mappings, Stud. Cercet. Ştiinţ., Ser. Mat., Univ. Bacău 7 (1997), 129–133. Zbl0967.54041
  18. [18] Popa V., Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math. 32 (1999), no. 1, 157–163. Zbl0926.54030
  19. [19] Popa V., A general fixed point theorem for weakly commuting multi-valued mappings, Anal. Univ. Dunărea de Jos, Galaţi, Ser. Mat. Fiz. Mec. Teor., Fasc. II 18 (22) (1999), 19–22. 
  20. [20] Popa V., A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math. 33 (2000), no. 1, 159–164. Zbl0947.54023
  21. [21] Reich S., Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121–124.[Crossref] Zbl0211.26002
  22. [22] Rus I.A., Cyclic representations of fixed points, Ann. Tiberiu Popoviciu, Semin. Funct. Equ. Approx. Convexity 3 (2005), 171–178. 
  23. [23] Sintunavarat W., Kumam P., Common fixed point theorem for cyclic generalized multi-valued mappings, Appl. Math. Lett. 25 (2012), 1849–1855.[Crossref] Zbl1254.54065

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.