Isogeometric treatment of large deformation contact and debonding problems with T-splines: a review

Rossana Dimitri

Curved and Layered Structures (2015)

  • Volume: 2, Issue: 1
  • ISSN: 2353-7396

Abstract

top
Within a setting where the isogeometric analysis (IGA) has been successful at bringing two different research fields together, i.e. Computer Aided Design (CAD) and numerical analysis, T-spline IGA is applied in this work to frictionless contact and mode-I debonding problems between deformable bodies in the context of large deformations. Based on the concept of IGA, the smooth basis functions are adopted to describe surface geometries and approximate the numerical solutions, leading to higher accuracy in the contact integral evaluation. The isogeometric discretizations are here incorporated into an existing finite element framework by using Bézier extraction, i.e. a linear operator which maps the Bernstein polynomial basis on Bézier elements to the global isogeometric basis. A recently released commercial T-spline plugin for Rhino is herein used to build the analysis models adopted in this study. In such context, the continuum is discretized with cubic T-splines, as well as with Non Uniform Rational B-Splines (NURBS) and Lagrange polynomial elements for comparison purposes, and a Gauss-point-to-surface (GPTS) formulation is combined with the penalty method to treat the contact constraints. The purely geometric enforcement of the non-penetration condition in compression is generalized to encompass both contact and mode-I debonding of interfaces which is approached by means of cohesive zone (CZ) modeling, as commonly done by the scientific community to analyse the progressive damage of materials and interfaces. Based on these models, non-linear relationships between tractions and relative displacements are assumed. These relationships dictate both the work of separation per unit fracture surface and the peak stress that has to be reached for the crack formation. In the generalized GPTS formulation an automatic switching procedure is used to choose between cohesive and contact models, depending on the contact status. Some numerical results are first presented and compared in 2D for varying resolutions of the contact and/or cohesive zone, including frictionless sliding and cohesive debonding, all featuring the competitive accuracy and performance of T-spline IGA. The superior accuracy of T-spline interpolations with respect to NURBS and Lagrange interpolations for a given number of degrees of freedom (Dofs) is always verified. The isogeometric formulation is also extended to 3D bodies, where some examples in large deformations based on T-spline discretizations show an high smoothness of the reaction history curves.

How to cite

top

Rossana Dimitri. "Isogeometric treatment of large deformation contact and debonding problems with T-splines: a review." Curved and Layered Structures 2.1 (2015): null. <http://eudml.org/doc/276826>.

@article{RossanaDimitri2015,
abstract = {Within a setting where the isogeometric analysis (IGA) has been successful at bringing two different research fields together, i.e. Computer Aided Design (CAD) and numerical analysis, T-spline IGA is applied in this work to frictionless contact and mode-I debonding problems between deformable bodies in the context of large deformations. Based on the concept of IGA, the smooth basis functions are adopted to describe surface geometries and approximate the numerical solutions, leading to higher accuracy in the contact integral evaluation. The isogeometric discretizations are here incorporated into an existing finite element framework by using Bézier extraction, i.e. a linear operator which maps the Bernstein polynomial basis on Bézier elements to the global isogeometric basis. A recently released commercial T-spline plugin for Rhino is herein used to build the analysis models adopted in this study. In such context, the continuum is discretized with cubic T-splines, as well as with Non Uniform Rational B-Splines (NURBS) and Lagrange polynomial elements for comparison purposes, and a Gauss-point-to-surface (GPTS) formulation is combined with the penalty method to treat the contact constraints. The purely geometric enforcement of the non-penetration condition in compression is generalized to encompass both contact and mode-I debonding of interfaces which is approached by means of cohesive zone (CZ) modeling, as commonly done by the scientific community to analyse the progressive damage of materials and interfaces. Based on these models, non-linear relationships between tractions and relative displacements are assumed. These relationships dictate both the work of separation per unit fracture surface and the peak stress that has to be reached for the crack formation. In the generalized GPTS formulation an automatic switching procedure is used to choose between cohesive and contact models, depending on the contact status. Some numerical results are first presented and compared in 2D for varying resolutions of the contact and/or cohesive zone, including frictionless sliding and cohesive debonding, all featuring the competitive accuracy and performance of T-spline IGA. The superior accuracy of T-spline interpolations with respect to NURBS and Lagrange interpolations for a given number of degrees of freedom (Dofs) is always verified. The isogeometric formulation is also extended to 3D bodies, where some examples in large deformations based on T-spline discretizations show an high smoothness of the reaction history curves.},
author = {Rossana Dimitri},
journal = {Curved and Layered Structures},
language = {eng},
number = {1},
pages = {null},
title = {Isogeometric treatment of large deformation contact and debonding problems with T-splines: a review},
url = {http://eudml.org/doc/276826},
volume = {2},
year = {2015},
}

TY - JOUR
AU - Rossana Dimitri
TI - Isogeometric treatment of large deformation contact and debonding problems with T-splines: a review
JO - Curved and Layered Structures
PY - 2015
VL - 2
IS - 1
SP - null
AB - Within a setting where the isogeometric analysis (IGA) has been successful at bringing two different research fields together, i.e. Computer Aided Design (CAD) and numerical analysis, T-spline IGA is applied in this work to frictionless contact and mode-I debonding problems between deformable bodies in the context of large deformations. Based on the concept of IGA, the smooth basis functions are adopted to describe surface geometries and approximate the numerical solutions, leading to higher accuracy in the contact integral evaluation. The isogeometric discretizations are here incorporated into an existing finite element framework by using Bézier extraction, i.e. a linear operator which maps the Bernstein polynomial basis on Bézier elements to the global isogeometric basis. A recently released commercial T-spline plugin for Rhino is herein used to build the analysis models adopted in this study. In such context, the continuum is discretized with cubic T-splines, as well as with Non Uniform Rational B-Splines (NURBS) and Lagrange polynomial elements for comparison purposes, and a Gauss-point-to-surface (GPTS) formulation is combined with the penalty method to treat the contact constraints. The purely geometric enforcement of the non-penetration condition in compression is generalized to encompass both contact and mode-I debonding of interfaces which is approached by means of cohesive zone (CZ) modeling, as commonly done by the scientific community to analyse the progressive damage of materials and interfaces. Based on these models, non-linear relationships between tractions and relative displacements are assumed. These relationships dictate both the work of separation per unit fracture surface and the peak stress that has to be reached for the crack formation. In the generalized GPTS formulation an automatic switching procedure is used to choose between cohesive and contact models, depending on the contact status. Some numerical results are first presented and compared in 2D for varying resolutions of the contact and/or cohesive zone, including frictionless sliding and cohesive debonding, all featuring the competitive accuracy and performance of T-spline IGA. The superior accuracy of T-spline interpolations with respect to NURBS and Lagrange interpolations for a given number of degrees of freedom (Dofs) is always verified. The isogeometric formulation is also extended to 3D bodies, where some examples in large deformations based on T-spline discretizations show an high smoothness of the reaction history curves.
LA - eng
UR - http://eudml.org/doc/276826
ER -

References

top
  1. [1] Heegaard J.H., Curnier A., An augmented Lagrange method for discrete large slip contact problems, Int. J. Numer. Meth Eng., 1993, 36, 569–593. [Crossref] Zbl0769.73078
  2. [2] Zavarise G., De Lorenzis L., The node-to-segment algorithm for 2D frictionless contact: classical formulation and special cases, Comput. Method. Appl. M., 2009, 198(41-44), 3428–3451. [Crossref] Zbl1230.74237
  3. [3] Pietrzak G., Curnier A., Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangean treatment, Comput. Method. Appl. M., 1999, 177, 351–381. Zbl0991.74047
  4. [4] Taylor R.L., Wriggers P., Smooth surface discretization for large deformation frictionless contact, Technical report, University of California, Berkeley, 1999, Report No. UCB/SEMM-99–04. 
  5. [5] Padmanabhan V., Laursen T.A., A framework for development of surface smoothing procedures in large deformation frictional contact analysis, Finite Elem. Anal. Des., 2001, 37, 173–198. Zbl0998.74053
  6. [6] Wriggers P., Krstulovic-Opara L., Korelc J., Smooth C1–interpolations for twodimensional frictional contact problems, Int. J. Numer. Methods Eng., 2001, 51, 1469–1495. Zbl1065.74621
  7. [7] Krstulovic-Opara L., Wriggers P., Korelc J., A C1–continuous formulation for 3D finite deformation frictional contact, Comput. Mech., 2002, 29, 27–42. Zbl1076.74555
  8. [8] Lengiewicz J., Korelc J., Stupkiewicz S., Automation of finite element formulations for large deformation contact problems, Int. J. Numer. Methods Eng., 2010, 85, 1252–1279. Zbl1217.74125
  9. [9] Stadler M., Holzapfel G.A., Korelc J., Cn–continuous modelling of smooth contact surfaces using NURBS and application to 2D problems, Int. J. Numer. Methods Eng., 2003, 57, 2177–2203. [Crossref] Zbl1062.74628
  10. [10] Stadler M.,Holzapfel G.A., Subdivision schemes for smooth contact surfaces of arbitrary mesh topology in 3D, Int. J. Numer. Methods Eng., 2004, 60, 1161–1195. [Crossref] Zbl1060.74641
  11. [11] Landon R.L., Hast M.W., Piazza S.J., Robust contact modeling using trimmed nurbs surfaces for dynamic simulations of articular contact, Comput. Meth. Appl. Mech. Eng., 2009, 198, 2339–2346. [Crossref] Zbl1229.74099
  12. [12] Hughes T.J.R., Cottrell J. A., Bazilevs Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. Meth. Appl. Mech. Eng., 2005, 194, 4135–4195. [Crossref] Zbl1151.74419
  13. [13] Temizer İ., Wriggers P., Hughes T.J.R., Contact treatment in isogeometric analysis with NURBS, Comput. Meth. Appl. Mech. Eng., 2011, 200(9–12), 1100–1112. Zbl1225.74126
  14. [14] Temizer İ., Wriggers P., Hughes T.J.R., Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS, Comput. Meth. Appl. Mech. Eng., 2012, 209–212, 115–128. Zbl1243.74130
  15. [15] Lu J., Isogeometric contact analysis: geometric basis and formulation for frictionless contact, Comput. Meth. Appl. Mech. Eng., 2011, 200, 726–74. Zbl1225.74097
  16. [16] De Lorenzis L., Temizer İ.,Wriggers P., Zavarise G., A large deformation frictional contact formulation using NURBS-based isogeometric analysis, Int. J. Numer. Methods Eng., 2011, 87(13), 1278–1300. Zbl1242.74104
  17. [17] De Lorenzis L.,Wriggers P., Zavarise G., A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method, Comput. Mech., 2012, 49(1), 1–20. [Crossref] Zbl06032281
  18. [18] Matzen M.E., Cichosz T., Bischoff M., A point to segment contact formulation for isogeometric, NURBS based finite elements, Comput. Meth. Appl. Mech. Eng., 2013, 255, 27–39. Zbl1297.74084
  19. [19] Dimitri R., De Lorenzis L., Scott M.A., Wriggers P., Taylor R.L., Zavarise G., Isogeometric large deformation frictionless contact using T-splines, Comput. Meth. Appl. Mech. Eng., 2014, 269, 394–414. Zbl1296.74071
  20. [20] De Lorenzis L., Evans J.A., Hughes T.J.R., Reali A., Isogeometric collocation: Neumann boundary conditions and contact, Comput. Meth. Appl. Mech. Eng., 2015, 284, 21–54. 
  21. [21] De Lorenzis L., Wriggers P., Hughes T.J.R., Isogeometric contact: a review, GAMM-Mitt. 37, No.1, 2014, 85–123, /DOI 10.1002/gamm.201410005. [Crossref] Zbl1308.74114
  22. [22] Alart P., Curnier A., A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Meth. Appl. Mech. Eng., 1991, 92, 353–375. [Crossref] Zbl0825.76353
  23. [23] Cottrell J. A., Hughes T.J.R., Bazilevs Y., Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, Chichester, 2009. 
  24. [24] Bazilevs Y., Calo V.M., Cottrell J.A., Evans J.A., Hughes T.J.R., Lipton S., Scott M.A., Sederberg T.W., Isogeometric analysis using T-splines, Comput. Meth. Appl. Mech. Eng., 2010, 199 (5-8), 229–263. [Crossref] Zbl1227.74123
  25. [25] Fischer K.A., Wriggers P., Frictionless 2D contact formulations for finite deformations based on the mortar method, Comput. Mech., 2005, 36, 226–244. [Crossref] Zbl1102.74033
  26. [26] Kanninen M.F., Popelar C.H., Advanced Fracture Mechanics, Oxford University Press, New York, 1985. Zbl0587.73140
  27. [27] Bazˇant Z.P., Planas J., Fracture and Size Effects in Concrete and Other Quasi-Brittle Materials, CRC Press, Boca Raton, 1998. 
  28. [28] Rice J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 1968, 35, 379–386. [Crossref] 
  29. [29] Rybicki E.F., Kanninen M.F., A finite element calculation of stress intensity factors by a modified crack closure integral, Eng. Fract. Mech., 1977, 9, 931–938. [Crossref] 
  30. [30] Raju I.S., Calculation of strain-energy release rates with higher order and singular finite elements, Eng. Fract. Mech., 1987, 28, 251–274. [Crossref] 
  31. [31] Hellen T.K., On the method of virtual crack extensions, Int. J. Numer. Methods Eng., 1975, 9, 187–207. [Crossref] Zbl0293.73049
  32. [32] Griflth A., The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. A., 1921, 221, 163–198. [Crossref] 
  33. [33] Thouless M.D., Fracture of a model interface under mixed-mode loading, Acta Metall. Mater., 1990, 38, 1135–1140. [Crossref] 
  34. [34] Thouless M.D., Hutchinson J.W., Liniger E.G., Plane-strain, buckling driven delamination of thin films: model experiments and mode-II fracture, Acta Metall. Mater., 1992, 40, 2639–2649. [Crossref] 
  35. [35] Natarajan S., Ferreira A.J.M., Nguyen-Xuan H., Analysis of crossply laminated plates using isogeometric analysis and unified formulation, Curved and Layer. Struct., 2014, 1, 1–10. 
  36. [36] Benzley S.E., Representation of singularitieswith isoparametric finite elements, Int. J. Numer. Methods Eng., 1974, 8, 537–545. [Crossref] Zbl0282.65087
  37. [37] Gifford L.N., Hilton P.D., Stress intensity factors by enriched finite elements, Eng. Fract. Mech., 1978, 10, 485–496. [Crossref] 
  38. [38] Sukumar N., Moran B., Black T., Belytschko T., An elementfree galerkin method for three-dimensional fracture mechanics, Comput. Mech., 1997, 20, 170–175. [Crossref] Zbl0888.73066
  39. [39] Jirasek M., Zimmerman T., Embedded crack model: I. basic formulation, Int. J. Numer. Methods Eng., 2001, 50, 1269–1290. [Crossref] Zbl1013.74068
  40. [40] Wells G.N., Sluys L.J., A new method for modelling cohesive cracks using finite elements, Int. J. Numer. Methods Eng., 2001, 50, 2667–2682. [Crossref] Zbl1013.74074
  41. [41] Moës N., Belytschko T., Extended finite element method for cohesive crack growth, Eng. Fract. Mech., 2002, 69, 813–833. [Crossref] 
  42. [42] Moës N., Dolbow J., Belytschko T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., 1999, 46, 131–150. [Crossref] Zbl0955.74066
  43. [43] Sukumar N., Huang Z.Y., Prevost J.H., Suo Z., Partition of unity enrichment for bimaterial interface cracks, Int. J. Numer. Methods Eng., 2004, 59, 1075–1102. [Crossref] Zbl1041.74548
  44. [44] Allix O., Ladeveze P., Interlaminar interface modelling for the prediction of delamination, Compos. Struct., 1992, 22, 235-242. [Crossref] 
  45. [45] Schellekens J.C.J., de Borst R., A non-linear finite element approach for the analysis of mode-I free edge delamination in composites, Int. J. Solids Struct., 1993, 30, 1239-1253. [Crossref] Zbl0775.73292
  46. [46] Barenblatt G.I., The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses, Axially-symmetric cracks, J. Appl. Math. Mech., 1959, 23, 622–636. [Crossref] Zbl0095.39202
  47. [47] Dugdale D.S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 1960, 8, 100–104. [Crossref] 
  48. [48] Needleman A., A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 1987, 54, 525–531. [Crossref] Zbl0626.73010
  49. [49] Needleman A., An analysis of tensile decohesion along an interface, J. Mech. Phys. Solids, 1990, 38, 289– 324. [Crossref] 
  50. [50] Tvergaard V., Hutchinson J.W., The relation between crack growth resistance and fracture process parameters in elasticplastic solids, J. Mech. Phys. Solids, 1992, 40(6), 1377–1397. [Crossref] Zbl0775.73218
  51. [51] Tvergaard V., Hutchinson J.W., The influence of plasticity on mixed mode interface toughness, J. Mech. Phys. Solids, 1993, 41(6), 1119–1135. [Crossref] Zbl0775.73219
  52. [52] Wei Y., Hutchinson J.W., Interface strength, work of adhesion and plasticity in the peel test, Int. J. Fract., 1998, 93, 315–333. [Crossref] 
  53. [53] Corigliano A., Formulation, identification and use of interface models in the numerical analysis of composite delamination, Int. J. Solids Struct., 1993, 30(20), 2779–2811. [Crossref] Zbl0782.73055
  54. [54] AllixO., Ladeveze P., Corigliano A.,Damage analysis of interlaminar fracture specimens, Compos. Struct., 1995, 31(1), 61–74. [Crossref] 
  55. [55] Point N., Sacco E., A delamination model for laminated composites, Int. J. Solids Struct., 1996, 33(4), 483–509. [Crossref] Zbl0902.73054
  56. [56] Bolzon G., Corigliano A., A discrete formulation for elastic solids with damaging interfaces, Comput. Meth. Appl. Mech. Eng., 1997, 140, 329–359. [Crossref] Zbl0891.73053
  57. [57] Allix O., Corigliano A., Geometrical and interfacial nonlinearities in the analysis of delamination in composites, Int. J. Solids Struct., 1999, 36(15), 2189–2216. [Crossref] Zbl0940.74016
  58. [58] Alfano G., Crisfield M.A., Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Int. J. Numer. Methods Eng., 2001, 50, 1701–1736. [Crossref] Zbl1011.74066
  59. [59] Criesfield M.A., Alfano G., Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model, Int. J. Numer. Methods Eng., 2002, 54, 1369–1390. [Crossref] Zbl1028.74044
  60. [60] Guimatsia I., Ankersen J.K., Davies G.A.O., Iannucci L., Decohesion finite element with enriched basis functions for delamination, Compos. Sci. Technol., 2009, 69(15-16), 2616–2624. [Crossref] 
  61. [61] Scott M.A., Borden M.J., Verhoosel C.V., Sederberg T.W., Hughes T.J.R., Isogeometric finite element data structures based on Bézier extraction of T-splines, Int. J. Numer. Methods Eng., 2011, 88(2), 126–156. [Crossref] Zbl1242.65243
  62. [62] Scott M.A., Li X., Sederberg T.W., Hughes T.J.R., Local refinement of analysis-suitable T-splines, Comput. Meth. Appl. Mech. Eng., 2012, 213-216, 206–222. 
  63. [63] Li X., Zheng J., Sederberg T.W., Hughes T.J.R., Scott M.A., On linear independence of T-spline blending functions, Comput. Aided Geom. Des., 2012, 29(1), 63–76. [Crossref] Zbl1251.65012
  64. [64] Scott M.A., Simpson R.N., Evans J.A., Lipton S., Bordas S.P.A., Hughes T.J.R., Sederberg T.W., Isogeometric boundary element analysis using unstructured T-splines, Comput. Meth. Appl. Mech. Eng., 2013, 254, 197–221. Zbl1297.74156
  65. [65] Giannelli C., Jüttler B., Speleers H., THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Des., 2012, 29(7), 485–498. [Crossref] Zbl1252.65030
  66. [66] Deng J., Chen F., Li X., Hu C., Tong W., Yang Z., Feng Y., Polynomial splines over hierarchical T-meshes, Graph. Models, 2008, 70, 76–86. 
  67. [67] Dokken T., Lyche T., Pettersen K.F., Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Des., 2013, 30(3), 331–356. [Crossref] Zbl1264.41011
  68. [68] Dimitri R., De Lorenzis L., Wriggers P., Zavarise G., NURBS- and T-spline-based isogeoemtric cohesive zone modeling of interface debonding, Comput. Mech., 2014, 54, 369–388. [Crossref] Zbl06327171
  69. [69] Sederberg T.W., Zheng J., Bakenov A., Nasri A., T-splines and TNURCCSs, ACM T. Graphic., 2003, 22(3), 477–484. [Crossref] 
  70. [70] Sederberg T.W., Zheng J., Song X., Knot intervals and multidegree splines, Comput. Aided Geom. Des., 2003, 20, 455–468. [Crossref] Zbl1069.41507
  71. [71] Sederberg T.W., Cardon D.L., Finnigan G.T., North N.S., Zheng J., Lyche T., T-spline simplification and local refinement, ACM T. Graphic., 2004, 23 (3), 276–283. [Crossref] 
  72. [72] Cottrell J.A., Reali A., Bazilevs Y., Hughes T.J.R., Isogeometric analysis of structural vibrations, Comput. Meth. Appl. Mech. Eng., 2006, 195, 5257–5296. [Crossref] Zbl1119.74024
  73. [73] Hughes T.J.R., Reali A., Sangalli G., Duality and unied analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method nite elements with k-method NURBS, Comput. Meth. Appl. Mech. Eng., 2008, 197(49-50), 4104–4124. [Crossref] Zbl1194.74114
  74. [74] Lorentz G. G., Bernstein Polynomials, Chelsea Publishing Co., New York, 1986. 
  75. [75] Piegl L. A., Tiller W., The NURBS Book, Springer, 1996. 
  76. [76] Autodesk, 2011, Inc. http://www.tsplines.com/rhino/ . 
  77. [77] Schillinger D., Rank E., An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry, Comput. Meth. Appl. Mech. Eng., 2011, 200(47-48), 3358– 3380. [Crossref] Zbl1230.74197
  78. [78] Vuong A.V., Giannelli C., Jüttler B., Simeon B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Meth. Appl. Mech. Eng., 2011, 49-52, 3554– 3567. Zbl1239.65013
  79. [79] Samet H., Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann Publishers: San Francisco, 2006. Zbl1139.68022
  80. [80] Burstedde C., Wilcox L.C., Ghattas O., p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees, SIAM J. Sci. Comput., 2011, 33(3), 1103–1133. Zbl1230.65106
  81. [81] Yserantant H., On the multi-level splitting of finite element spaces, Numer. Math., 1986, 49, 379–412. [Crossref] Zbl0608.65065
  82. [82] Krysl P., Grinspun E., Schröder P., Natural hierarchical refinement for finite element methods, Int. J. Numer. Methods Eng., 2003, 56, 1109–1124. [Crossref] Zbl1078.74660
  83. [83] Bungartz H.J., Griebel M., Sparse grids, Acta Numer., 2004, 13, 147–269. Zbl1118.65388
  84. [84] Taylor R.L., FEAP – Finite Element Analysis Program, 2013, www.ce.berkeley/feap, University of California, Berkeley. 
  85. [85] Laursen T.A., Computational contact and impact mechanics, 2002, Springer, Berlin. 
  86. [86] P. Wriggers, Computational contact mechanics, 2nd edition, 2006, Springer, Berlin. 
  87. [87] Puso M.A., Laursen T.A., A mortar segment-to-segment frictional contact method for large deformations, Comput. Meth. Appl. Mech. Eng., 2004, 193, 4891–4913. [Crossref] Zbl1112.74535
  88. [88] Papadopoulos P., Taylor R.L., A mixed formulation for the finite element solution of contact problems, Comput. Meth. Appl. Mech. Eng., 1992, 94(3), 373–389. [Crossref] Zbl0743.73029
  89. [89] Zienkiewicz O.C., Taylor R.L., The Finite Element Method for Solid and Structural Mechanics, 2005, Butterworth-Heinemann, 6th edition. Zbl1084.74001
  90. [90] Kiendl J., Bletzinger K.U., Linhard J., Wüchner R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Meth. Appl. Mech. Eng., 2009, 198(49-52), 3902–3914. [Crossref] Zbl1231.74422
  91. [91] Hermes F.H., Process zone and cohesive element size in numerical simulations of delamination in bi-layers, Master thesis, September 24th 2010, MT 10.21, Eindhoven. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.