Normalization of basic algebras

Miroslav Kolařík

Discussiones Mathematicae - General Algebra and Applications (2008)

  • Volume: 28, Issue: 2, page 237-249
  • ISSN: 1509-9415

Abstract

top
We consider algebras determined by all normal identities of basic algebras. For such algebras, we present a representation based on a q-lattice, i.e., the normalization of a lattice.

How to cite

top

Miroslav Kolařík. "Normalization of basic algebras." Discussiones Mathematicae - General Algebra and Applications 28.2 (2008): 237-249. <http://eudml.org/doc/276847>.

@article{MiroslavKolařík2008,
abstract = {We consider algebras determined by all normal identities of basic algebras. For such algebras, we present a representation based on a q-lattice, i.e., the normalization of a lattice.},
author = {Miroslav Kolařík},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {basic algebra; section antitone involution; q-lattice; normalization of a variety; -lattice},
language = {eng},
number = {2},
pages = {237-249},
title = {Normalization of basic algebras},
url = {http://eudml.org/doc/276847},
volume = {28},
year = {2008},
}

TY - JOUR
AU - Miroslav Kolařík
TI - Normalization of basic algebras
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2008
VL - 28
IS - 2
SP - 237
EP - 249
AB - We consider algebras determined by all normal identities of basic algebras. For such algebras, we present a representation based on a q-lattice, i.e., the normalization of a lattice.
LA - eng
KW - basic algebra; section antitone involution; q-lattice; normalization of a variety; -lattice
UR - http://eudml.org/doc/276847
ER -

References

top
  1. [1] I. Chajda, Lattices in quasiordered sets, Acta Univ. Palacki. Olomuc., Fac. Rerum. Nat., Math. 31 (1992), 6-12. Zbl0773.06002
  2. [2] I. Chajda, Congruence properties of algebras in nilpotent shifts of varieties, pp. 35-46 in: General Algebra and Discrete Mathematics (K. Denecke, O. Lüders, eds.), Heldermann, Berlin 1995. Zbl0821.08009
  3. [3] I. Chajda, Normally presentable varieties, Algebra Universalis 34 (1995), 327-335. 
  4. [4] I. Chajda and E. Graczyńska, Algebras presented by normal identities, Acta Univ. Palacki. Olomuc., Fac. Rerum. Nat., Math. 38 (1999), 49-58. Zbl0993.08002
  5. [5] I. Chajda, R. Halaš and J. Kühr, Many-valued quantum algebras, Algebra Universalis, DOI 10.1007/s00012-008-2086-9. Zbl1219.06013
  6. [6] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag (Lemgo, Germany), 2007, ISBN 978-3-88538-230-0. 
  7. [7] I. Chajda, R. Halaš, J. Kühr and A. Vanžurová, Normalization of MV-algebras, Mathematica Bohemica 130 (2005), 283-300. Zbl1112.06012
  8. [8] I. Chajda and M. Kolařík, Independence of axiom system of basic algebras, Soft Computing, DOI 10.1007/s00500-008-0291-2. Zbl1178.06007
  9. [9] I. Mel'nik, Nilpotent shifts of varieties, Math. Notes 14 (1973), 692-696 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.