Inequalities Of Lipschitz Type For Power Series In Banach Algebras
Annales Mathematicae Silesianae (2015)
- Volume: 29, Issue: 1, page 61-83
- ISSN: 0860-2107
Access Full Article
topAbstract
topHow to cite
topSever S. Dragomir. "Inequalities Of Lipschitz Type For Power Series In Banach Algebras." Annales Mathematicae Silesianae 29.1 (2015): 61-83. <http://eudml.org/doc/276889>.
@article{SeverS2015,
abstract = {Let [...] f(z)=∑n=0∞αnzn $f(z) = \sum \nolimits _\{n = 0\}^\infty \{\alpha _n z^n \}$ be a function defined by power series with complex coefficients and convergent on the open disk D (0, R) ⊂ ℂ, R > 0. For any x, y ∈ ℬ, a Banach algebra, with ‖x‖, ‖y‖ < R we show among others that [...] ‖f(y)−f(x)‖≤‖y−x‖∫01fa′(‖(1−t)x+ty‖)dt \[\left\Vert \{f(y) - f(x)\} \right\Vert \le \left\Vert \{y - x\} \right\Vert \int \_0^1 \{f\_a^\prime \} (\left\Vert \{(1 - t)x + ty\} \right\Vert )dt\]
where [...] fa(z)=∑n=0∞|αn| zn $f_a (z) = \sum \nolimits _\{n = 0\}^\infty \{|\alpha _n |\} \;z^n$ . Inequalities for the commutator such as [...] ‖f(x)f(y)−f(y)f(x)‖≤2fa(M)fa′(M)‖y−x‖, \[\left\Vert \{f(x)f(y) - f(y)f(x)\} \right\Vert \le 2f\_a (M)f\_a^\prime (M)\left\Vert \{y - x\} \right\Vert ,\]
if ‖x‖, ‖y‖ ≤ M < R, as well as some inequalities of Hermite–Hadamard type are also provided.},
author = {Sever S. Dragomir},
journal = {Annales Mathematicae Silesianae},
keywords = {Banach algebras; Power series; Lipschitz type inequalities; Hermite-Hadamard type inequalities},
language = {eng},
number = {1},
pages = {61-83},
title = {Inequalities Of Lipschitz Type For Power Series In Banach Algebras},
url = {http://eudml.org/doc/276889},
volume = {29},
year = {2015},
}
TY - JOUR
AU - Sever S. Dragomir
TI - Inequalities Of Lipschitz Type For Power Series In Banach Algebras
JO - Annales Mathematicae Silesianae
PY - 2015
VL - 29
IS - 1
SP - 61
EP - 83
AB - Let [...] f(z)=∑n=0∞αnzn $f(z) = \sum \nolimits _{n = 0}^\infty {\alpha _n z^n }$ be a function defined by power series with complex coefficients and convergent on the open disk D (0, R) ⊂ ℂ, R > 0. For any x, y ∈ ℬ, a Banach algebra, with ‖x‖, ‖y‖ < R we show among others that [...] ‖f(y)−f(x)‖≤‖y−x‖∫01fa′(‖(1−t)x+ty‖)dt \[\left\Vert {f(y) - f(x)} \right\Vert \le \left\Vert {y - x} \right\Vert \int _0^1 {f_a^\prime } (\left\Vert {(1 - t)x + ty} \right\Vert )dt\]
where [...] fa(z)=∑n=0∞|αn| zn $f_a (z) = \sum \nolimits _{n = 0}^\infty {|\alpha _n |} \;z^n$ . Inequalities for the commutator such as [...] ‖f(x)f(y)−f(y)f(x)‖≤2fa(M)fa′(M)‖y−x‖, \[\left\Vert {f(x)f(y) - f(y)f(x)} \right\Vert \le 2f_a (M)f_a^\prime (M)\left\Vert {y - x} \right\Vert ,\]
if ‖x‖, ‖y‖ ≤ M < R, as well as some inequalities of Hermite–Hadamard type are also provided.
LA - eng
KW - Banach algebras; Power series; Lipschitz type inequalities; Hermite-Hadamard type inequalities
UR - http://eudml.org/doc/276889
ER -
References
top- [1] Azpeitia A.G., Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28 (1994), no. 1, 7–12. Zbl0832.26015
- [2] Bhatia R., Matrix analysis, Springer-Verlag, New York, 1997. Zbl0863.15001
- [3] Cheung W.-S., Dragomir S.S., Vector norm inequalities for power series of operators in Hilbert spaces, Tbilisi Math. J. 7 (2014), no. 2, 21–34. Zbl1320.47013
- [4] Dragomir S.S., Cho Y.J., Kim S.S., Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math. Anal. Appl. 245 (2000), no. 2, 489–501. Zbl0956.26015
- [5] Dragomir S.S., A mapping in connection to Hadamard’s inequalities, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 128 (1991), 17–20. Zbl0747.26015
- [6] Dragomir S.S., Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl. 167 (1992), 49–56. Zbl0758.26014
- [7] Dragomir S.S., On Hadamard’s inequalities for convex functions, Math. Balkanica 6 (1992), 215–222. Zbl0834.26010
- [8] Dragomir S.S., An inequality improving the second Hermite–Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Art. 35. Zbl0995.26009
- [9] Dragomir S.S., Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (2006), 471–476.[Crossref] Zbl1113.26021
- [10] Dragomir S.S., Gomm I., Bounds for two mappings associated to the Hermite–Hadamard inequality, Aust. J. Math. Anal. Appl. 8 (2011), Art. 5, 9 pp. Zbl1236.26020
- [11] Dragomir S.S., Gomm I., Some new bounds for two mappings related to the Hermite–Hadamard inequality for convex functions, Numer. Algebra Cont Optim. 2 (2012), no. 2, 271–278. Zbl06082538
- [12] Dragomir S.S., Milośević D.S., Sándor J., On some refinements of Hadamard’s inequalities and applications, Univ. Belgrad, Publ. Elek. Fak. Sci. Math. 4 (1993), 21–24.
- [13] Dragomir S.S., Pearce C.E.M., Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, 2000. Available at
- [14] Guessab A., Schmeisser G., Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory 115 (2002), no. 2, 260–288. Zbl1012.26013
- [15] Kilianty E., Dragomir S.S., Hermite–Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. 13 (2010), no. 1, 1–32. Zbl1183.26025
- [16] Matić M., Pečarić J., Note on inequalities of Hadamard’s type for Lipschitzian mappings, Tamkang J. Math. 32 (2001), no. 2, 127–130. Zbl0993.26019
- [17] Merkle M., Remarks on Ostrowski’s and Hadamard’s inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10 (1999), 113–117. Zbl0946.26016
- [18] Mikusiński J., The Bochner integral, Birkhäuser Verlag, Basel, 1978. Zbl0369.28010
- [19] Pearce C.E.M., Rubinov A.M., P-functions, quasi-convex functions, and Hadamard type inequalities, J. Math. Anal. Appl. 240 (1999), no. 1, 92–104. Zbl0939.26009
- [20] Pečarić J., Vukelić A., Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions, in: Functional equations, inequalities and applications, Kluwer Acad. Publ., Dordrecht, 2003, pp. 105–137. Zbl1067.26021
- [21] Toader G., Superadditivity and Hermite–Hadamard’s inequalities, Studia Univ. Babeş-Bolyai Math. 39 (1994), no. 2, 27–32. Zbl0868.26012
- [22] Yang G.-S., Hong M.-C., A note on Hadamard’s inequality, Tamkang J. Math. 28 (1997), no. 1, 33–37. Zbl0880.26019
- [23] Yang G.-S., Tseng K.-L., On certain integral inequalities related to Hermite–Hadamard inequalities, J. Math. Anal. Appl. 239 (1999), no. 1, 180–187. Zbl0939.26010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.