Report of Meeting
Annales Mathematicae Silesianae (2015)
- Volume: 29, Issue: 1, page 151-165
- ISSN: 0860-2107
Access Full Article
topHow to cite
top"Report of Meeting." Annales Mathematicae Silesianae 29.1 (2015): 151-165. <http://eudml.org/doc/276917>.
@article{Unknown2015,
journal = {Annales Mathematicae Silesianae},
language = {eng},
number = {1},
pages = {151-165},
title = {Report of Meeting},
url = {http://eudml.org/doc/276917},
volume = {29},
year = {2015},
}
TY - JOUR
TI - Report of Meeting
JO - Annales Mathematicae Silesianae
PY - 2015
VL - 29
IS - 1
SP - 151
EP - 165
LA - eng
UR - http://eudml.org/doc/276917
ER -
References
top- [1] Baczyński M., Jayaram B., Fuzzy implications, Springer, Berlin, 2008. Zbl1147.03012
- [2] Bustince H., Campión M.J., Fernández F.J., Induráin E., Ugarte M.D., New trends on the permutability equation, Aequationes Math. 88 (2014), 211–232.[WoS] Zbl1305.39017
- [3] Jayaram B., Baczyński M., Mesiar R., R-implications and the exchange principle: the case of border continuous t-norms, Fuzzy Sets and Systems 224 (2013), 93–105. Zbl1284.03183
- [4] Klement E.P., Mesiar R., Pap E., Triangular Norms. Kluwer, Dordrecht, 2000. Zbl0972.03002
- [5] Baron K., On the convergence in law of iterates of random-valued functions, Aust. J. Math. Anal. Appl. 6 (2009), no. 1, Art. 3, 9 pp.
- [6] Kuczma M., Choczewski B., Ger R., Iterative functional equations, Encyclopedia of Mathematics and its Applications 32, Cambridge University Press, Cambridge, 1990. Zbl0703.39005
- [7] Boros Z., Páles Zs., ℚ-subdifferential of Jensen-convex functions, J. Math. Anal. Appl. 321 (2006), 99–113. Zbl1099.49015
- [8] Ger R., Kominek Z., Boundedness and continuity of additive and convex functionals, Aequationes Math. 37 (1989), no. 2–3, 252–258. Zbl0702.46004
- [9] Nikodem K., Páles Zs., On t-convex functions, Real Anal. Exchange 29 (2003), no. 1, 219–228.
- [10] Lewicki M., Olbryś A., On nonsymmetric t-convex functions, Math. Inequal. Appl. 17 (2014), no. 1, 95–100. Zbl1293.39012
- [11] Kuhn N., A note on t-convex functions, in: General Inequalities, 4 (Oberwolfach, 1983) (W. Walter ed.), Internat. Ser. Numer. Math., vol. 71, Birkhäuser, Basel, 1984, pp. 269–276.
- [12] Kiss T., Separation theorems for generalized convex functions (hu), Master thesis, 2014, Supervisor: Dr. Zsolt Páles.
- [13] Badora R., Chmieliński J., Decomposition of mappings approximately inner product preserving, Nonlinear Analysis 62 (2005), 1015–1023. Zbl1091.39005
- [14] Chmieliński J., Orthogonality equation with two unknown functions, Manuscript. Zbl1342.39023
- [15] Gajda Z., Kominek Z., On separations theorems for subadditive and superadditive functionals, Studia Math. 100 (1991), 25–38. Zbl0739.39014
- [16] Ger R., On functional inequalities stemming from stability questions, in: General Inequalities 6, Internat. Ser. Numer. Math. 103, Birkhäuser, Basel, 1992, pp. 227–240. Zbl0770.39007
- [17] Veselý L., Zajiček L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. 289 (1989), 52 pp. Zbl0685.46027
- [18] Shulman E., Group representations and stability of functional equations, J. London Math. Soc. 54 (1996), 111–120.[Crossref] Zbl0861.39020
- [19] Fechner W., Sikorska J., On the stability of orthogonal additivity, Bull. Polish Acad. Sci. Math. 58 (2010), 23–30. Zbl1197.39016
- [20] Ger R., Sikorska J., Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43 (1995), 143–151. Zbl0833.39007
- [21] Sikorska J., Set-valued orthogonal additivity, Set-Valued Var. Anal. 23 (2015), 547–557. Zbl1328.39039
- [22] Levin V.I., Stechkin S.B., Inequalities, Amer. Math. Soc. Transl. (2) 14 (1960), 1–29.
- [23] Szostok T., Ohlin’s lemma and some inequalities of the Hermite-Hadamard type, Aequationes Math. 89 (2015), 915–926. Zbl1326.26024
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.