Mixed Type Of Additive And Quintic Functional Equations
Abasalt Bodaghi; Pasupathi Narasimman; Krishnan Ravi; Behrouz Shojaee
Annales Mathematicae Silesianae (2015)
- Volume: 29, Issue: 1, page 35-50
- ISSN: 0860-2107
Access Full Article
topAbstract
topHow to cite
topAbasalt Bodaghi, et al. "Mixed Type Of Additive And Quintic Functional Equations." Annales Mathematicae Silesianae 29.1 (2015): 35-50. <http://eudml.org/doc/276950>.
@article{AbasaltBodaghi2015,
abstract = {In this paper, we investigate the general solution and Hyers–Ulam–Rassias stability of a new mixed type of additive and quintic functional equation of the form [...] f(3x+y)−5f(2x+y)+f(2x−y)+10f(x+y)−5f(x−y)=10f(y)+4f(2x)−8f(x) \[f\left( \{3x + y\} \right) - 5f\left( \{2x + y\} \right) + f\left( \{2x - y\} \right) + 10f\left( \{x + y\} \right) - 5f\left( \{x - y\} \right) = 10f\left( y \right) + 4f\left( \{2x\} \right) - 8f\left( x \right)\]
in the set of real numbers.},
author = {Abasalt Bodaghi, Pasupathi Narasimman, Krishnan Ravi, Behrouz Shojaee},
journal = {Annales Mathematicae Silesianae},
keywords = {additive functional equation; Hyers–Ulam stability; quintic functional equation},
language = {eng},
number = {1},
pages = {35-50},
title = {Mixed Type Of Additive And Quintic Functional Equations},
url = {http://eudml.org/doc/276950},
volume = {29},
year = {2015},
}
TY - JOUR
AU - Abasalt Bodaghi
AU - Pasupathi Narasimman
AU - Krishnan Ravi
AU - Behrouz Shojaee
TI - Mixed Type Of Additive And Quintic Functional Equations
JO - Annales Mathematicae Silesianae
PY - 2015
VL - 29
IS - 1
SP - 35
EP - 50
AB - In this paper, we investigate the general solution and Hyers–Ulam–Rassias stability of a new mixed type of additive and quintic functional equation of the form [...] f(3x+y)−5f(2x+y)+f(2x−y)+10f(x+y)−5f(x−y)=10f(y)+4f(2x)−8f(x) \[f\left( {3x + y} \right) - 5f\left( {2x + y} \right) + f\left( {2x - y} \right) + 10f\left( {x + y} \right) - 5f\left( {x - y} \right) = 10f\left( y \right) + 4f\left( {2x} \right) - 8f\left( x \right)\]
in the set of real numbers.
LA - eng
KW - additive functional equation; Hyers–Ulam stability; quintic functional equation
UR - http://eudml.org/doc/276950
ER -
References
top- [1] Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64–66.[Crossref] Zbl0040.35501
- [2] Bodaghi A., Quintic functional equations in non-Archimedean normed spaces, J. Math. Extension 9 (2015), no. 3, 51–63.
- [3] Bodaghi A., Moosavi S.M., Rahimi H., The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara 59 (2013), 235–250.[Crossref] Zbl1306.39017
- [4] Cădariu L., Radu V., Fixed points and the stability of quadratic functional equations, An. Univ. Timişoara, Ser. Mat. Inform. 41 (2003), 25–48. Zbl1103.39304
- [5] Cădariu L., Radu V., On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43–52. Zbl1060.39028
- [6] Czerwik S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59–64.[Crossref] Zbl0779.39003
- [7] Hyers D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA. 27 (1941), 222–224.[Crossref] Zbl0061.26403
- [8] Hyers D.H., Isac G., Rassias Th.M., Stability of functional equations in several variables, Birkhauser, Boston, 1998. Zbl0907.39025
- [9] Jung S.-M., Hyers–Ulam–Rassias stability of functional equations in nonlinear analysis, Springer, New York, 2011. Zbl1221.39038
- [10] Kannappan P., Functional equations and inequalities with applications, Springer, New York, 2009. Zbl1178.39032
- [11] Najati A., Moghimi M.B., Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), 339–415. Zbl1127.39055
- [12] Park C., Cui J., Eshaghi Gordji M., Orthogonality and quintic functional equations, Acta Math. Sinica, English Series 29 (2013), 1381–1390.[Crossref] Zbl1275.39019
- [13] Rassias J.M., On approximation of approximately linear mappings by linear mapping, J. Funct. Anal. 46 (1982), no. 1, 126–130.[Crossref] Zbl0482.47033
- [14] Rassias J.M., On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. (2) 108 (1984), no. 4, 445–446. Zbl0599.47106
- [15] Rassias Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.[Crossref]
- [16] Rassias Th.M., Brzdęk J., Functional equations in mathematical analysis, Springer, New York, 2012.
- [17] Ulam S.M., Problems in modern mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.
- [18] Xu T.Z., Rassias J.M., Rassias M.J., Xu W.X., A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Inequal. Appl. (2010), Article ID 423231, 23 pp, doi:10.1155/2010/423231.[Crossref] Zbl1219.39020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.