Mixed Type Of Additive And Quintic Functional Equations

Abasalt Bodaghi; Pasupathi Narasimman; Krishnan Ravi; Behrouz Shojaee

Annales Mathematicae Silesianae (2015)

  • Volume: 29, Issue: 1, page 35-50
  • ISSN: 0860-2107

Abstract

top
In this paper, we investigate the general solution and Hyers–Ulam–Rassias stability of a new mixed type of additive and quintic functional equation of the form [...] f(3x+y)−5f(2x+y)+f(2x−y)+10f(x+y)−5f(x−y)=10f(y)+4f(2x)−8f(x) f 3 x + y - 5 f 2 x + y + f 2 x - y + 10 f x + y - 5 f x - y = 10 f y + 4 f 2 x - 8 f x in the set of real numbers.

How to cite

top

Abasalt Bodaghi, et al. "Mixed Type Of Additive And Quintic Functional Equations." Annales Mathematicae Silesianae 29.1 (2015): 35-50. <http://eudml.org/doc/276950>.

@article{AbasaltBodaghi2015,
abstract = {In this paper, we investigate the general solution and Hyers–Ulam–Rassias stability of a new mixed type of additive and quintic functional equation of the form [...] f(3x+y)−5f(2x+y)+f(2x−y)+10f(x+y)−5f(x−y)=10f(y)+4f(2x)−8f(x) \[f\left( \{3x + y\} \right) - 5f\left( \{2x + y\} \right) + f\left( \{2x - y\} \right) + 10f\left( \{x + y\} \right) - 5f\left( \{x - y\} \right) = 10f\left( y \right) + 4f\left( \{2x\} \right) - 8f\left( x \right)\] in the set of real numbers.},
author = {Abasalt Bodaghi, Pasupathi Narasimman, Krishnan Ravi, Behrouz Shojaee},
journal = {Annales Mathematicae Silesianae},
keywords = {additive functional equation; Hyers–Ulam stability; quintic functional equation},
language = {eng},
number = {1},
pages = {35-50},
title = {Mixed Type Of Additive And Quintic Functional Equations},
url = {http://eudml.org/doc/276950},
volume = {29},
year = {2015},
}

TY - JOUR
AU - Abasalt Bodaghi
AU - Pasupathi Narasimman
AU - Krishnan Ravi
AU - Behrouz Shojaee
TI - Mixed Type Of Additive And Quintic Functional Equations
JO - Annales Mathematicae Silesianae
PY - 2015
VL - 29
IS - 1
SP - 35
EP - 50
AB - In this paper, we investigate the general solution and Hyers–Ulam–Rassias stability of a new mixed type of additive and quintic functional equation of the form [...] f(3x+y)−5f(2x+y)+f(2x−y)+10f(x+y)−5f(x−y)=10f(y)+4f(2x)−8f(x) \[f\left( {3x + y} \right) - 5f\left( {2x + y} \right) + f\left( {2x - y} \right) + 10f\left( {x + y} \right) - 5f\left( {x - y} \right) = 10f\left( y \right) + 4f\left( {2x} \right) - 8f\left( x \right)\] in the set of real numbers.
LA - eng
KW - additive functional equation; Hyers–Ulam stability; quintic functional equation
UR - http://eudml.org/doc/276950
ER -

References

top
  1. [1] Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64–66.[Crossref] Zbl0040.35501
  2. [2] Bodaghi A., Quintic functional equations in non-Archimedean normed spaces, J. Math. Extension 9 (2015), no. 3, 51–63. 
  3. [3] Bodaghi A., Moosavi S.M., Rahimi H., The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara 59 (2013), 235–250.[Crossref] Zbl1306.39017
  4. [4] Cădariu L., Radu V., Fixed points and the stability of quadratic functional equations, An. Univ. Timişoara, Ser. Mat. Inform. 41 (2003), 25–48. Zbl1103.39304
  5. [5] Cădariu L., Radu V., On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43–52. Zbl1060.39028
  6. [6] Czerwik S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59–64.[Crossref] Zbl0779.39003
  7. [7] Hyers D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA. 27 (1941), 222–224.[Crossref] Zbl0061.26403
  8. [8] Hyers D.H., Isac G., Rassias Th.M., Stability of functional equations in several variables, Birkhauser, Boston, 1998. Zbl0907.39025
  9. [9] Jung S.-M., Hyers–Ulam–Rassias stability of functional equations in nonlinear analysis, Springer, New York, 2011. Zbl1221.39038
  10. [10] Kannappan P., Functional equations and inequalities with applications, Springer, New York, 2009. Zbl1178.39032
  11. [11] Najati A., Moghimi M.B., Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), 339–415. Zbl1127.39055
  12. [12] Park C., Cui J., Eshaghi Gordji M., Orthogonality and quintic functional equations, Acta Math. Sinica, English Series 29 (2013), 1381–1390.[Crossref] Zbl1275.39019
  13. [13] Rassias J.M., On approximation of approximately linear mappings by linear mapping, J. Funct. Anal. 46 (1982), no. 1, 126–130.[Crossref] Zbl0482.47033
  14. [14] Rassias J.M., On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. (2) 108 (1984), no. 4, 445–446. Zbl0599.47106
  15. [15] Rassias Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.[Crossref] 
  16. [16] Rassias Th.M., Brzdęk J., Functional equations in mathematical analysis, Springer, New York, 2012. 
  17. [17] Ulam S.M., Problems in modern mathematics, Chapter VI, Science Ed., Wiley, New York, 1940. 
  18. [18] Xu T.Z., Rassias J.M., Rassias M.J., Xu W.X., A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Inequal. Appl. (2010), Article ID 423231, 23 pp, doi:10.1155/2010/423231.[Crossref] Zbl1219.39020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.