New insights into the strong formulation finite element method for solving elastostatic and elastodynamic problems

Nicholas Fantuzzi

Curved and Layered Structures (2014)

  • Volume: 1, Issue: 1
  • ISSN: 2353-7396

Abstract

top
This present paper has a complete and homogeneous presentation of plane stress and plane strain problems using the Strong Formulation Finite Element Method (SFEM). In particular, a greater emphasis is given to the numerical implementation of the governing and boundary conditions of the partial differential system of equations. The paper’s focus is on numerical stability and accuracy related to elastostatic and elastodynamic problems. In the engineering literature, results are mainly reported for isotropic and homogeneous structures. In this paper, a composite structure is investigated. The SFEM solution is compared to the ones obtained using commercial finite element codes. Generally, the SFEM observes fast accuracy and all the results are in very good agreement with the ones presented in literature.

How to cite

top

Nicholas Fantuzzi. "New insights into the strong formulation finite element method for solving elastostatic and elastodynamic problems." Curved and Layered Structures 1.1 (2014): null. <http://eudml.org/doc/276962>.

@article{NicholasFantuzzi2014,
abstract = {This present paper has a complete and homogeneous presentation of plane stress and plane strain problems using the Strong Formulation Finite Element Method (SFEM). In particular, a greater emphasis is given to the numerical implementation of the governing and boundary conditions of the partial differential system of equations. The paper’s focus is on numerical stability and accuracy related to elastostatic and elastodynamic problems. In the engineering literature, results are mainly reported for isotropic and homogeneous structures. In this paper, a composite structure is investigated. The SFEM solution is compared to the ones obtained using commercial finite element codes. Generally, the SFEM observes fast accuracy and all the results are in very good agreement with the ones presented in literature.},
author = {Nicholas Fantuzzi},
journal = {Curved and Layered Structures},
keywords = {Elastostatic Problem; Elastodynamic Problem; Composite Structure; Strong Formulation Finite Element Method; Differential Quadrature Method.},
language = {eng},
number = {1},
pages = {null},
title = {New insights into the strong formulation finite element method for solving elastostatic and elastodynamic problems},
url = {http://eudml.org/doc/276962},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Nicholas Fantuzzi
TI - New insights into the strong formulation finite element method for solving elastostatic and elastodynamic problems
JO - Curved and Layered Structures
PY - 2014
VL - 1
IS - 1
SP - null
AB - This present paper has a complete and homogeneous presentation of plane stress and plane strain problems using the Strong Formulation Finite Element Method (SFEM). In particular, a greater emphasis is given to the numerical implementation of the governing and boundary conditions of the partial differential system of equations. The paper’s focus is on numerical stability and accuracy related to elastostatic and elastodynamic problems. In the engineering literature, results are mainly reported for isotropic and homogeneous structures. In this paper, a composite structure is investigated. The SFEM solution is compared to the ones obtained using commercial finite element codes. Generally, the SFEM observes fast accuracy and all the results are in very good agreement with the ones presented in literature.
LA - eng
KW - Elastostatic Problem; Elastodynamic Problem; Composite Structure; Strong Formulation Finite Element Method; Differential Quadrature Method.
UR - http://eudml.org/doc/276962
ER -

References

top
  1. [1] Love A.E.H., A Treatise on the Mathematical Theory of Elasticity, Dover, 1944. 
  2. [2] Timoshenko S., Goodier J.N., Theory of Elasticity, McGraw-Hill, 1951. Zbl0045.26402
  3. [3] Sokolnikoff I.S., Mathematical Theory of Elasticity, McGraw- Hill, 1956. 
  4. [4] Lekhnitskii S.G., Theory of Elasticity of an Anisotropic Body, Mir Publishers, 1981. Zbl0467.73011
  5. [5] Kaw A.K., Mechanics of CompositeMaterials, CRC Press, 1997. 
  6. [6] Mase G.T., Mase G.E., Continuum Mechanics for Engineers, CRC Press, 1999. Zbl0991.74500
  7. [7] Jones R.M., Mechanics of Composite Materials, Taylor & Francis, 1999. 
  8. [8] Reddy J.N., Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, 2002. 
  9. [9] Wempner G., Talaslidis D., Mechanics of Solids and Shells, CRC Press, 2003. Zbl1042.74001
  10. [10] Leissa A.W., Qatu M.S., Vibrations of Continuous Systems, McGraw-Hill, 2011. 
  11. [11] Bellman R., Casti J., Differential quadrature and long-term integration, J. Math. Anal. Appl., 1971, 34, 235-238. [Crossref] Zbl0236.65020
  12. [12] Bellman R., Kashef B.G., Casti J., Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations, J. Comput. Phys., 1972, 10, 40-52. [Crossref] Zbl0247.65061
  13. [13] Finlayson B.A., Scriven L.E., The method of weighted residual: a review, Appl. Mech. Rev., 1966, 19, 735-748. 
  14. [14] Gottlieb D., Orszag S.A., Numerical analysis of spectral methods. Theory and applications, CBMS-NSF Regional Conf. Ser. In Appl. Math., SIAM, 1977. Zbl0412.65058
  15. [15] Boyd J.P., Chebyshev and Fourier spectral methods, Dover Publications, 2001. Zbl0994.65128
  16. [16] Quan J.R., A unified approach for solving nonlinear partial differential equations in chemical engineering applications,Master thesis, University of Nebraska-Lincoln. 
  17. [17] Quan J.R., Chang C.T., New insights in solving distributed system equations by the quadrature method – I. Analysis, Comput. Chem. Eng., 1989, 13, 779-788. [Crossref] 
  18. [18] Quan J.R., Chang C.T., New insights in solving distributed system equations by the quadrature method – II. Numerical experiments, Comput. Chem. Eng., 1989, 13, 1017-1024. [Crossref] 
  19. [19] Bert C.W., Malik M., Differential quadrature method in computational mechanics, Appl. Mech. Rev., 1996, 49, 1-27. [Crossref] 
  20. [20] Shu C., Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation, PhD Thesis, University of Glasgow, UK, 1991. 
  21. [21] Shu C., Richards B.E., Parallel simulation of incompressible viscous flows by generalized differential quadrature, Comput. Syst. Eng., 1992, 3, 271-281. [Crossref] 
  22. [22] Shu C., Richards B.E., Application of generalized differential quadrature to solve two-dimensional incompressible Navier- Stokes equations, Int. J. Numer. Meth. Fluids, 1992, 15, 791- 798. [Crossref] Zbl0762.76085
  23. [23] Bert C.W., Jang S.K., Striz A.G., Two new approximate methods for analyzing free vibration of structural components, AIAA J., 1988, 26, 612-618. [Crossref] Zbl0661.73063
  24. [24] Bert C.W., Jang S.K., Striz, A.G., Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature, Comput. Mech., 1989, 5, 217-226. [Crossref] Zbl0695.73029
  25. [25] Bert C.W., Malik M., Free vibration analysis of thin cylindrical shells by the differential quadrature method, J. Press. Vess. Technol., 1996, 118, 1-12. [Crossref] 
  26. [26] Bert C.W.,Wang X., Striz A.G., Differential quadrature for static and free vibration analyses of anisotropic plates, Int. J. Solids Struct., 1993, 30, 1737- 1744. [Crossref] Zbl0800.73182
  27. [27] Bert C.W., Wang X., Striz A.G., Static and free vibrational analysis of beams and plates by differential quadrature method, Acta Mech., 1994, 102, 11-24. [Crossref] Zbl0810.73077
  28. [28] Bert C.W., Wang X., Striz A.G., Convergence of DQ method in the analysis of anisotropic plates, J. Sound Vib., 1994, 170, 140-144. [Crossref] 
  29. [29] Jang S.K., Application of Differential Quadrature to the Analysis of Structural Components, PhD Thesis, University of Oklahoma, 1987. 
  30. [30] Jang S.K., Bert C.W., Striz A.G., Application of differential quadrature to static analysis of structural components, Int. J. Numer. Meth. Engng., 1989, 28, 561-577. [Crossref] Zbl0669.73064
  31. [31] Kang K., Bert C.W., Striz A.G., Vibration analysis of shear deformable circular arches by the differential quadrature method, J. Sound Vib., 1995, 181, 353-360. Zbl0982.74513
  32. [32] Kang K.J., Bert C.W. Striz, A.G., Vibration and buckling analysis of circular arches using DQM, Comput. Struct., 1996, 60, 49-57. [Crossref] Zbl0918.73354
  33. [33] Shu C., Free vibration analysis of composite laminated conical shells by generalized differential quadrature, J. Sound Vib., 1996, 194, 587-604. Zbl1232.74034
  34. [34] Shu C., An eflcient approach for free vibration analysis of conical shells, Int. J. Mech. Sci., 1996, 38, 935-949. [Crossref] Zbl0857.73079
  35. [35] Shu C., Du H., Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates, Int. J. Solids Struct., 1997, 34, 819-835. [Crossref] Zbl0944.74645
  36. [36] Shu C.,Wang C.M., Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates, Eng. Struct., 1999, 21, 125-134. [Crossref] 
  37. [37] Ng T.Y., Li H., Lam K.Y., Loy C.T., Parametric instability of conical shells by the generalized differential quadrature method, Int. J. Numer. Meth. Engng., 1999, 44, 819-837. [Crossref] Zbl0956.74080
  38. [38] Ng T.Y., Lam K.Y., Free vibration analysis of rotating circular cylindrical shells on elastic foundation, J. Vib. Acoust., 2000, 122, 85-89. 
  39. [39] Lam K.Y., Hua L., Influence of initial pressure on frequency characteristics of a rotating truncated circular conical shell, Int. J. Mech. Sci., 2000, 42, 213-236. [Crossref] Zbl0978.74033
  40. [40] Shu C., Differential Quadrature and Its Application in Engineering, Springer, 2000. Zbl0944.65107
  41. [41] Lam K.Y., Li H., Ng T.Y., Chua C.F., Generalized differential quadrature method for the free vibration of truncated conical panels, J. Sound Vib., 2002, 251, 329-348. Zbl1237.74214
  42. [42] Ng T.Y., Li H., Lam K.Y., Generalized differential quadrature method for the free vibration of rotating composite laminated conical shell with various boundary conditions, Int. J. Mech. Sci., 2003, 45, 567-587. [Crossref] Zbl1116.74439
  43. [43] Ng C.H.W., Zhao Y.B., Wei G.W., Comparison of discrete convolution and generalized differential quadrature for the vibration analysis of rectangular plates, Comput. Meth. Appl. Mech. Engng., 2004, 193, 2483-2506. Zbl1067.74600
  44. [44] Civalek Ö., Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns, Eng. Struct., 2004, 26, 171-186. [Crossref] 
  45. [45] Civalek Ö., Geometrically nonlinear analysis of doubly curved isotropic shells resting on elastic foundation by a combination of harmonic differential quadrature-finite difference methods, Int. J. Pres. Ves. Pip., 2005, 82, 470-479. [Crossref] 
  46. [46] Viola E., Tornabene F., Vibration analysis of damaged circular arches with varying cross-section, Struct. Integr. Durab. (SIDSDHM), 2005, 1, 155-169. 
  47. [47] Viola E., Tornabene F., Vibration analysis of conical shell structures using GDQ method, Far East J. Appl. Math., 2006, 25, 23- 39. Zbl1113.74096
  48. [48] Tornabene F., Modellazione e Soluzione di Strutture a Guscio in Materiale Anisotropo, PhD Thesis, University of Bologna, Italy, 2007. 
  49. [49] Tornabene F., Viola E., Vibration analysis of spherical structural elements using the GDQ method, Comput. Math. Appl., 2007, 53, 1538-1560. [Crossref] Zbl1152.74350
  50. [50] Viola E., Dilena M., Tornabene F., Analytical and numerical results for vibration analysis of multi-stepped and multidamaged circular arches, J. Sound Vib., 2007, 299, 143-163. 
  51. [51] Marzani A., Tornabene F., Viola E., Nonconservative stability problems via generalized differential quadrature method, J. Sound Vib. 315, 2008, 176-196. [Crossref] 
  52. [52] Tornabene F., Viola E., 2-D solution for free vibrations of parabolic shells using generalized differential quadrature method, Eur. J. Mech. A-Solid, 2008, 27, 1001-1025. [Crossref] Zbl1151.74360
  53. [53] Tornabene F., Free vibration analysis of functionally graded conical, cylindrical and annular shell structures with a fourparameter power-law distribution, Comput. Methods Appl. Mech. Engrg., 2009, 198, 2911-2935. Zbl1229.74062
  54. [54] Tornabene F., Viola E., Free vibrations of four-parameter functionally graded parabolic panels and shell of revolution, Eur. J. Mech. A-Solid, 2009, 28, 991-1013. [Crossref] Zbl1176.74087
  55. [55] Tornabene F., Viola E., Free vibration analysis of functionally graded panels and shells of revolution, Meccanica, 2009, 44, 255-281. [Crossref] Zbl1254.74056
  56. [56] Hong C.C., Thermal bending analysis of shear-deformable laminated anisotropic plates by the GDQ method, Mech. Res. Commun., 2009, 36, 804-810. [Crossref] Zbl1273.74171
  57. [57] Tornabene F., Viola E., Inman D.J., 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical and annular shell structures, J. Sound Vib., 2009, 328, 259-290. 
  58. [58] Viola E., Tornabene F., Free vibrations of three parameter functionally graded parabolic panels of revolution, Mech. Res. Commun., 2009, 36, 587-594. [Crossref] Zbl1258.74111
  59. [59] Sadeghian H., Rezazadeh G., Comparison of generalized differential quadrature and Galerkin methods for the analysis of micro-electro-mechanical coupled systems, Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2807-2816. 
  60. [60] Tornabene F., Marzani A., Viola E., Elishakoff I., Critical flow speeds of pipes conveying fluid by the generalized differential quadrature method, Adv. Theor. Appl. Mech., 2010, 3, 121-138. Zbl05786529
  61. [61] Tornabene F., 2-D GDQ solution for free vibrations of anisotropic doubly-curved shells and panels of revolution, Compos. Struct., 2011, 93, 1854-1876. 
  62. [62] Tornabene F., Free vibrations of anisotropic doubly-curved shells and panels of revolution with a free-form meridian resting on Winkler-Pasternak elastic foundations, Compos. Struct., 2011, 94, 186-206. [Crossref] 
  63. [63] Tornabene F., Liverani A., Caligiana G., FGM and laminated doubly-curved shells and panels of revolution with a free-form meridian: a 2-D GDQ solution for free vibrations, Int. J. Mech. Sci., 2011, 53, 446-470. [Crossref] 
  64. [64] Viola E., Rossetti L., Fantuzzi N., Numerical investigation of functionally graded cylindrical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery, Compos. Struct., 2012, 94, 3736-3758. [Crossref] 
  65. [65] Tornabene F., Liverani A., Caligiana G., Laminated composite rectangular and annular plates: a GDQ solution for static analysis with a posteriori shear and normal stress recovery, Compos. Part B-Eng., 2012, 43, 1847-1872. [Crossref] 
  66. [66] Tornabene F., Liverani A., Caligiana G., Static analysis of laminated composite curved shells and panels of revolution with a posteriori shear and normal stress recovery using generalized differential quadrature method, Int. J. Mech. Sci., 2012, 61, 71- 87. [Crossref] 
  67. [67] Tornabene F., Liverani A., Caligiana G., General anisotropic doubly-curved shell theory: a differential quadrature solution for free vibrations of shells and panels of revolutionwith a freeform meridian, J. Sound Vib., 2012, 331, 4848-4869. 
  68. [68] Ferreira A.J.M., Viola E., Tornabene F., Fantuzzi N., Zenkour A.M., Analysis of sandwich plates by generalized differential quadrature method, Math. Probl. Eng., 2013, 2013, 1-22, Article ID 964367. [Crossref] Zbl1299.74113
  69. [69] Tornabene F., Ceruti A., Free-form laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations: a 2-D GDQ solution for static and free vibration analysis, World J. Mech., 2013, 3, 1-25. 
  70. [70] Tornabene F., Reddy J.N., FGM and laminated doubly-curved and degenerate shells resting on nonlinear elastic foundations: a GDQ solution for static analysiswith a posteriori stress and strain recovery, J. Indian Inst. Sci., 2013, 93, 635-688. 
  71. [71] Tornabene F., Viola E., Static analysis of functionally graded doubly-curved shells and panels of revolution, Meccanica, 2013, 48, 901-930. [Crossref] Zbl1293.74300
  72. [72] Tornabene F., Viola E., Fantuzzi N., General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels, Compos. Struct., 2013, 104, 94-117. [Crossref] 
  73. [73] Viola E., Tornabene F., Fantuzzi N., General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels, Compos. Struct., 2013, 95, 639-666. [Crossref] 
  74. [74] Viola E., Tornabene F., Fantuzzi N., Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories, Compos. Struct., 2013, 101, 59-93. [Crossref] 
  75. [75] Tornabene F., Fantuzzi N., Mechanics of Laminated Composite Doubly-Curved Shell Structures. The Generalized Differential Quadrature Method and the Strong Formulation Finite Element Method, Esculapio, 2014. 
  76. [76] Ferreira A.J.M., Carrera E., Cinefra M., Viola E., Tornabene F., Fantuzzi N., Zenkour A.M., Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a unified formulation, Compos. Part B-Eng., 2014, 58, 544-552. [Crossref] 
  77. [77] Tornabene F., Fantuzzi N., Viola E., Carrera E., Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method, Compos. Struct., 2014, 107, 675-697. [Crossref] 
  78. [78] Tornabene F., Fantuzzi N., Viola E., Reddy J.N., Winkler- Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels, Compos. Part B-Eng., 2014, 57, 269-296. [Crossref] 
  79. [79] Tornabene F., Ceruti, A., Mixed static and dynamic optimization of four-parameter functionally graded completely doublycurved and degenerate shells and panels using GDQ method, Math. Probl. Eng., 2013, 2013, 1-33, Article ID 867079. [Crossref] 
  80. [80] Viola E., Rossetti L., Fantuzzi N., Tornabene F., Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery, Compos. Struct., 2014, 112, 44-65. [Crossref] 
  81. [81] Tornabene F., Fantuzzi N., Bacciocchi M., The local GDQ method applied to general higher-order theories of doublycurved laminated composite shells and panels: the free vibration analysis, Compos. Struct., 2014, 116, 637-660. [Crossref] 
  82. [82] Tornabene F., Fantuzzi N., Bacciocchi M., Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories, Compos. Part B Eng., 2014, 67, 490-509. [Crossref] 
  83. [83] Viola E., Tornabene F., Fantuzzi N., Stress and strain recovery of laminated composite doubly-curved shells and panels using higher-order formulations, Key Eng. Mat., 2015, 624, 205-213. 
  84. [84] Tornabene F., Fantuzzi N., Viola E., Batra R.C., Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory, Compos. Struct., 2015, 119, 67-89. [Crossref] 
  85. [85] Liu G.R., Mesh Free Methods. Moving Beyond the Finite Element Method, CRC Press, 2003. Zbl1031.74001
  86. [86] Li H.,Mulay S.S., Meshless Methods and their Numerical Properties, CRC Press, 2013. Zbl1266.65001
  87. [87] Liew K.M., Huang Y.Q., Reddy J.N., Analysis of general shaped thin plates by the moving least-squares differential quadrature method, Finite Elem. Anal. Design, 2004, 40, 1453-1474. [Crossref] 
  88. [88] Li Q.S., Huang Y.Q., Moving least-squares differential quadrature method for free vibration of antisymmetric laminates, J. Eng. Mech., 2004, 130, 1447-1457. [Crossref] 
  89. [89] Huang Y.Q., Li Q.S., Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method, Comput. Meth. Appl. Mech. Engng., 2004, 193, 3471-3492. Zbl1068.74090
  90. [90] Lanhe W., Hua L., Daobin W., Vibration analysis of generally laminated composite plates by the moving least squares differential quadrature method, Compos. Struct., 2005, 68, 319- 330. [Crossref] 
  91. [91] Sator L., Sladek V., Sladek J., Coupling effects in elastic analysis of FGM composite plates by mesh-free methods", Compos. Struct., 2014, 115, 100-110. Zbl1325.74168
  92. [92] Sator L., Sladek V., Sladek J., Analysis of Beams with Transversal Gradations of the Young’s Modulus and Variable Depths by the Meshless Method, Slovak J. Civil Eng., 2014, 22, 23-36. 
  93. [93] Belytschko T., Lu Y.Y., Gu L., Element-free Galerkin methods, Int. J. Numer. Meth. Engng., 1994, 37, 229-256. [Crossref] Zbl0796.73077
  94. [94] Belytschko T., Lu Y.Y., Gu L., Tabbara M., Element-free Galerkin methods for static and dynamic fracture, Int. J. Solids Struct., 1995, 32, 2547- 2570. [Crossref] Zbl0918.73268
  95. [95] Belytschko T., Krongauz Organ D., Fleming M., Krysl P., Meshless methods: an overview and recent developments, Comput. Meth. Appl. Engng., 1996, 139, 3-47. [Crossref] Zbl0891.73075
  96. [96] Krysl P., Belytschko T., Element-free Galerkin method: convergence, Comput. Meth. Appl. Mech. Engng., 1997, 148, 257-277. [Crossref] Zbl0918.73125
  97. [97] Atluri S.N., Zhu T., A new Meshless Local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling & simulation, Comput. Model. Simul. Eng., 1998, 3, 187-196. 
  98. [98] Atluri S.N., Zhu T., A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 1998, 22, 117-127. [Crossref] Zbl0932.76067
  99. [99] Atluri S.N., Zhu T., New concepts in meshless methods, Int. J. Numer. Meth. Engng., 2000, 47, 537-556. [Crossref] Zbl0988.74075
  100. [100] Atluri S.N., Zhu T.L., The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics, Comput. Mech., 2000, 25, 169-179. [Crossref] Zbl0976.74078
  101. [101] Kansa E.J., Multiquadrics - A scattered data approximation scheme with applications to computational fluid-dynamics - I surface approximations and partial derivative estimates, Comput. Math. Appl., 1990, 19, 127-145. [Crossref] Zbl0692.76003
  102. [102] Kansa E.J., Multiquadrics - A scattered data approximation scheme with applications to computational fluid-dynamics - II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 1990, 19, 147-161. [Crossref] Zbl0850.76048
  103. [103] Fasshauer G.E., Solving differential equationswith radial basis functions: multilevel methods and smoothing”, Adv. Comput. Math., 1999, 11, 139-159. [Crossref] Zbl0940.65122
  104. [104] Ferreira A.J.M., Fasshauer G.E., Computation of natural frequencies of shear deformable beams and plates by an RBFpseudospectral method, Comput. Meth. Appl. Mech. Engng., 2006, 196, 134-146. Zbl1120.74528
  105. [105] Ferreira A.J.M., Fasshauer G.E., Batra R.C., Rodrigues J.D., Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter, Compos. Struct., 2008, 86, 328-343. [Crossref] 
  106. [106] Wendland H., Meshless Galerkin methods using radial basis functions, Math. Comput., 1999, 68, 1521- 1531. [Crossref] Zbl1020.65084
  107. [107] Buhmann M.D., Radial basis functions, Acta Numer., 2000, 9, 1-38. Zbl1004.65015
  108. [108] Shu C., Ding H., Yeo K.S., Solution of partial differential equations by a global radial basis function- based differential quadrature method, Eng. Anal. Bound. Elem., 2004, 28, 1217- 1226. [Crossref] Zbl1081.65546
  109. [109] Tornabene F., Fantuzzi N., Viola E., Ferreira A.J.M., Radial Basis Function method applied to doubly-curved laminated composite shells and panels with a general higher-order equivalent single Layer theory, Compos. Part B-Eng., 2013, 55, 642-659. [Crossref] 
  110. [110] Civan F., Sliepcevich C.M., Application of differential quadrature in solution of pool boiling in cavities, Proc. Oklahoma Acad. Sci., 1985, 65, 73-78. 
  111. [111] Chen W.L., A New Approach for Structural Analysis. The Quadrature Element Method, PhD Thesis, University of Oklahoma, 1994. 
  112. [112] ChenW.L., Striz A.G., Bert C.W., High accuracy plane stress and plate element in the quadrature element method, Int. J. Solids Struct., 2000, 37, 627- 647. Zbl0968.74080
  113. [113] Zhong H., He Y., Solution of Poisson and Laplace equations by quadrilateral quadrature element. Int. J. Solids Struct., 1998, 35, 2805-2819. [Crossref] Zbl0919.73318
  114. [114] Shu C., Chew Y.T., Khoo B.C., Yeo K.S., Application of GDQ scheme to simulate incompressible viscous flows around complex geometries, Mech. Res. Commun., 1995, 22, 319-325. [Crossref] Zbl0845.76076
  115. [115] Shu C., Chew Y.T., Liu Y., An eflcient approach for numerical simulation of flows in Czochralski crystal growth, J. Cryst. Growth, 1997, 181, 427- 436. 
  116. [116] Lam S.S.E., Application of the differential quadrature method to two-dimensional problems with arbitrary geometry. Comput. Struct., 1993, 47, 459-464. [Crossref] 
  117. [117] Bert C.W., Malik M., The differential quadrature method for irregular domains and application to plate vibration, Int. J. Mech. Sci., 1996, 38, 589-606. [Crossref] Zbl0857.73077
  118. [118] Chen C.-N., A generalized differential quadrature element method. Comput. Meth. Appl. Mech. Engrg, 2000, 188, 553- 566. [Crossref] Zbl0971.76068
  119. [119] Chen C.-N., DQEM and DQFDM for the analysis of composite two-dimensional elasticity problems, Compos. Struct., 2013, 59, 3-13. 
  120. [120] Zhang Y.Y., Development of Differential Quadrature Methods and Their Applications to Plane Elasticity, PhD Thesis, National University of Singapore, 2003. 
  121. [121] Zong Z., Lam K., Zhang Y., A multidomain differential quadrature approach to plane elastic problems with material discontinuity, Math. Comput. Model., 2005, 41, 539-553. [Crossref] Zbl1129.74350
  122. [122] Zong Z., Zhang Y.Y., Advanced Differential Quadrature Methods, CRC Press, 2009. Zbl1178.65125
  123. [123] Xing Y., Liu B., High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain, Int. J. Numer. Meth. Eng., 2009, 80, 1718-1742. [Crossref] Zbl1183.74328
  124. [124] Xing Y., Liu B., Liu G., A differential quadrature finite element method, Int. J. Appl. Mech., 2010, 2, 207-227. [Crossref] 
  125. [125] Zhong H., Yu T., A weak form quadrature element method for plane elasticity problems, Appl.Math. Model., 2009, 33, 3801- 3814. [Crossref] Zbl1205.74172
  126. [126] Fantuzzi N., Generalized differential quadrature finite element method applied to advanced structural mechanics, PhD Thesis, University of Bologna, 2013. 
  127. [127] Viola E., Tornabene F., Fantuzzi N., Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape, Compos. Struct., 2013, 106, 815-834. [Crossref] 
  128. [128] Viola E., Tornabene F., Ferretti E., Fantuzzi N., Soft core plane state structures under static loads using GDQFEM and Cell method, CMES, 2013, 94, 301-329. 
  129. [129] Viola E., Tornabene F., Ferretti E., Fantuzzi N., GDQFEM numerical simulations of continuous media with cracks and discontinuities, CMES, 2013, 94, 331-368. 
  130. [130] Viola E., Tornabene F., Ferretti E., Fantuzzi N., On static analysis of plane state structures via GDQFEM and Cell method, CMES, 2013, 94, 421-458. 
  131. [131] Fantuzzi N., Tornabene F., Strong formulation finite element method for arbitrarily shaped laminated plates - I. Theoretical analysis, Adv. Aircraft Space. Sci., 2014, 1, 124-142. 
  132. [132] Fantuzzi N., Tornabene F., Strong formulation finite element method for arbitrarily shaped laminated plates - II. Numerical analysis, Adv. Aircraft Space. Sci., 2014, 1, 143-173. 
  133. [133] Fantuzzi N., Tornabene F., Viola E., Generalized differential quadrature finite element method for vibration analysis of arbitrarily shaped membranes, Int. J. Mech. Sci., 2014, 79, 216- 251. [Crossref] 
  134. [134] Fantuzzi N., Tornabene F., Viola E., Ferreira A.J.M., A Strong Formulation Finite Element Method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape, Meccanica, 2014, 49, 2503-2542. [Crossref] Zbl1299.74160
  135. [135] Fantuzzi N., Tornabene F., Viola E., Four-parameter functionally graded cracked plates of arbitrary shape: a GDQFEM solution for free vibrations, Mech. Adv. Mat. Struct., 2014, (in press), DOI: [Crossref] 
  136. [136] Tornabene F., Fantuzzi N., Bacciocchi M., The strong formulation finite element method: stability and accuracy, Fract. Struct. Integr., 2014, 29, 251-265. 
  137. [137] Tornabene F., Fantuzzi N., Ubertini F., Viola E., Strong formulation finite element method based on differential quadrature: a survey, Appl. Mech. Rev., 2014, (in press), DOI:10.1115/1.4028859 [Crossref] 
  138. [138] Zhong H., He Y., A note on incorporation of domain decomposition into the differential quadrature method, Commun. Numer. Methods Engrg., 2003, 19, 297-306. [Crossref] Zbl1092.74578
  139. [139] Bardell N.S., Langley R.S., Dunsdon J.M., On the free in-plane vibration of isotropic rectangular plates, J. Sound Vib., 1996, 191, 459-467. 
  140. [140] Hyde K., Chang J.Y., Bacca C., Wickert J.A., Parameter studies for plane stress in-plane vibration of rectangular plates, J. Sound Vib., 2001, 247, 471-487. 
  141. [141] Singh A.V., Muhammad T., Free in-plane vibration of isotropic non-rectangular plates, J. Sound Vib., 2004, 273, 219-231. 
  142. [142] Park C.I., Frequency equation for the in-plane vibration of a clamped circular plate, J. Sound Vib., 2008, 313, 325-333. 
  143. [143] Bashmal S., Bhat R., Rakheja S., In-plane free vibration of circular annular disks, J. Sound Vib., 2009, 322, 216-226. 
  144. [144] R.H. Macneal, R.L. Harder, A proposed standard set of problems to test finite element accuracy. Finite Elem. Anal Design, 1985, 1, 3-20. 
  145. [145] Rezaiee-Pajand, M. Karkon, An effective membrane element based on analytical solution, Eur. J. Mech. A/Solids, 2013, 39, 268-279. [Crossref] 
  146. [146] M.C. Amirani, S. Khalili, N. Nemati, Free vibration analysis of sandwich beam with FG core using the element free Galerkin method, Compos. Struct.,2009, 90, 373-379. [Crossref] 
  147. [147] R. Cook, Concepts and applications of finite element analysis. Wiley, 2001. 
  148. [148] R. Cook, J. Avrashi, Error estimation and adaptive meshing for vibration problems, Comput. Struct., 1992, 44, 619-626. [Crossref] 
  149. [149] K.K. Gupta, Development of a finite dynamic element for free vibration analysis of two-dimensional structures. Int. J. Numer. Methods Engrg., 1978, 12, 1311-1327. [Crossref] Zbl0377.73081
  150. [150] Y. Li, N. Fantuzzi, F. Tornabene, On mixed mode crack initiation and direction in shafts: strain energy density factor and maximum tangential stress criteria, Eng. Fract. Mech., 2013, 109, 273-289. [Crossref] 
  151. [151] Y. Li, E. Viola, Size effect investigation of a central interface crack between two bonded dissimilar materials. Compos. Struct., 2013, 105, 90-107. [Crossref] 
  152. [152] E. Viola, N. Fantuzzi, A. Marzani, A. (2012): Cracks interaction effect on the dynamic stability of beams under conservative and nonconservative forces. Key Eng. Mat., 2012, 488-489, 383-386. 
  153. [153] E. Viola, Y. Li, N. Fantuzzi, N. (2012): On the stress intensity factors of cracked beams for structural analysis. Key Eng. Mat., 2012, 488-489, 379-382. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.