A Fan-Type Heavy Pair Of Subgraphs For Pancyclicity Of 2-Connected Graphs
Discussiones Mathematicae Graph Theory (2016)
- Volume: 36, Issue: 1, page 173-184
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Bedrossian, Forbidden subgraph and Minimum Degree Conditions for Hamiltonicity, PhD Thesis (Memphis State University, USA, 1991).
- [2] P. Bedrossian, G. Chen and R.H. Schelp, A generalization of Fan’s condition for Hamiltonicity, pancyclicity and Hamiltonian connectedness, Discrete Math. 115 (1993) 39–59. doi:10.1016/0012-365X(93)90476-A[Crossref] Zbl0773.05075
- [3] A. Benhocine and A.P. Wojda, The Geng-Hua Fan conditions for pancyclic or Hamilton-connected graphs, J. Combin. Theory Ser. B 58 (1987) 167–180. doi:10.1016/0095-8956(87)90038-4[Crossref] Zbl0613.05038
- [4] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80–84. doi:10.1016/0095-8956(71)90016-5[Crossref] Zbl0183.52301
- [5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan London and Elsevier, 1976).
- [6] G. Fan, New su cient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984) 221–227. doi:0.1016/0095-8956(84)90054-6
- [7] M. Ferrara, M.S. Jacobson and A. Harris, Cycle lenghts in Hamiltonian graphs with a pair of vertices having large degree sum, Graphs Combin. 26 (2010) 215–223. doi:10.1007/s00373-010-0915-z[Crossref] Zbl1230.05179
- [8] B. Ning, Pairs of Fan-type heavy subgraphs for pancyclicity of 2-connected graphs, Australas. J. Combin. 58 (2014) 127–136. Zbl1296.05115
- [9] B. Ning and S. Zhang, Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs, Discrete Math. 313 (2013) 1715–1725. doi:10.1016/j.disc.2013.04.023[Crossref]
- [10] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for Hamiltonian graphs, J. Combin. Theory Ser. B 45 (1988) 99–107. doi:10.1016/0095-8956(88)90058-5[Crossref] Zbl0607.05050