Unique-Maximum Coloring Of Plane Graphs
Discussiones Mathematicae Graph Theory (2016)
- Volume: 36, Issue: 1, page 95-102
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topIgor Fabrici, and Frank Göring. "Unique-Maximum Coloring Of Plane Graphs." Discussiones Mathematicae Graph Theory 36.1 (2016): 95-102. <http://eudml.org/doc/276968>.
@article{IgorFabrici2016,
abstract = {A unique-maximum k-coloring with respect to faces of a plane graph G is a coloring with colors 1, . . . , k so that, for each face of G, the maximum color occurs exactly once on the vertices of α. We prove that any plane graph is unique-maximum 3-colorable and has a proper unique-maximum coloring with 6 colors.},
author = {Igor Fabrici, Frank Göring},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {plane graph; weak-parity coloring; unique-maximum coloring},
language = {eng},
number = {1},
pages = {95-102},
title = {Unique-Maximum Coloring Of Plane Graphs},
url = {http://eudml.org/doc/276968},
volume = {36},
year = {2016},
}
TY - JOUR
AU - Igor Fabrici
AU - Frank Göring
TI - Unique-Maximum Coloring Of Plane Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2016
VL - 36
IS - 1
SP - 95
EP - 102
AB - A unique-maximum k-coloring with respect to faces of a plane graph G is a coloring with colors 1, . . . , k so that, for each face of G, the maximum color occurs exactly once on the vertices of α. We prove that any plane graph is unique-maximum 3-colorable and has a proper unique-maximum coloring with 6 colors.
LA - eng
KW - plane graph; weak-parity coloring; unique-maximum coloring
UR - http://eudml.org/doc/276968
ER -
References
top- [1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
- [2] D.P. Bunde, K. Milans, D.B. West and H. Wu, Parity and strong parity edge-coloring of graphs, Congr. Numer. 187 (2007) 193–213.[WoS] Zbl1135.05020
- [3] P. Cheilaris, Conflict-Free Coloring, PhD Thesis (City University of New York, 2009).
- [4] P. Cheilaris, B. Keszegh and D. Pálvölgyi, Unique-maximum and conflict-free colouring for hypergraphs and tree graphs, SIAM J. Discrete Math. 27 (2013) 1775–1787. doi:10.1137/120880471[Crossref][WoS] Zbl1292.05107
- [5] P. Cheilaris, E. Specker and S. Zachos, Neochromatica, Comment. Math. Univ. Carolin. 51 (2010) 469–480. Zbl1224.05164
- [6] P. Cheilaris and G. Tóth, Graph unique-maximum and conflict-free colouring, J. Discrete Algorithms 9 (2011) 241–251. doi:10.1016/j.jda.2011.03.005[Crossref]
- [7] J. Czap and S. Jendrol’, Colouring vertices of plane graphs under restrictions given by faces, Discuss. Math. Graph Theory 29 (2009) 521–543. doi:10.7151/dmgt.1462[Crossref] Zbl1193.05065
- [8] G. Even, Z. Lotker, D. Ron and S. Smorodinsky, Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks, SIAM J. Comput. 33 (2003) 94–136. doi:10.1137/S0097539702431840[Crossref] Zbl1069.68120
- [9] I. Fabrici, S. Jendrol’ and M. Vrbjarová, Unique-maximum edge-colouring of plane graphs with respect to faces, Discrete Appl. Math. 185 (2015) 239–243. doi:10.1016/j.dam.2014.12.002[Crossref][WoS] Zbl1311.05061
- [10] R. Glebov, T. Szabó and G. Tardos, Conflict-free coloring of graphs. arXiv: 1111.5501. Zbl1288.05086
- [11] M. Katchalski, W. McCuaig and S. Seager, Ordered colourings, Discrete Math. 142 (1995) 141–154. doi:10.1016/0012-365X(93)E0216-Q[Crossref] Zbl0842.05032
- [12] A.V. Kostochka, M. Kumbhat and T. Łuczak, Conflict-free colorings of uniform hypergraphs with few edges, Combin. Probab. Comput. 21 (2012) 611–622. doi:10.1017/S0963548312000156[Crossref] Zbl1247.05082
- [13] A. Kündgen and R. Ramamurthi, Coloring face-hypergraphs of graphs on surfaces, J. Combin. Theory Ser. B 85 (2002) 307–337. doi:10.1006/jctb.2001.2107[Crossref] Zbl1029.05057
- [14] J. Pach and G. Tardos, Conflict-free colorings of graphs and hypergraphs, Combin. Probab. Comput. 18 (2009) 819–834. doi:10.1017/S0963548309990290[Crossref] Zbl1197.05054
- [15] R. Ramamurthi and D.B. West, Maximum face-constrained coloring of plane graphs, Discrete Math. 274 (2004) 233–240. doi:10.1016/j.disc.2003.09.001[Crossref] Zbl1032.05050
- [16] S. Smorodinsky, Conflict-free coloring and its applications. arXiv: 1005.3616. Zbl1314.05081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.