Supermagic Generalized Double Graphs 1

Jaroslav Ivančo

Discussiones Mathematicae Graph Theory (2016)

  • Volume: 36, Issue: 1, page 211-225
  • ISSN: 2083-5892

Abstract

top
A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.

How to cite

top

Jaroslav Ivančo. "Supermagic Generalized Double Graphs 1." Discussiones Mathematicae Graph Theory 36.1 (2016): 211-225. <http://eudml.org/doc/276979>.

@article{JaroslavIvančo2016,
abstract = {A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.},
author = {Jaroslav Ivančo},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {double graphs; supermagic graphs; degree-magic graphs},
language = {eng},
number = {1},
pages = {211-225},
title = {Supermagic Generalized Double Graphs 1},
url = {http://eudml.org/doc/276979},
volume = {36},
year = {2016},
}

TY - JOUR
AU - Jaroslav Ivančo
TI - Supermagic Generalized Double Graphs 1
JO - Discussiones Mathematicae Graph Theory
PY - 2016
VL - 36
IS - 1
SP - 211
EP - 225
AB - A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.
LA - eng
KW - double graphs; supermagic graphs; degree-magic graphs
UR - http://eudml.org/doc/276979
ER -

References

top
  1. [1] L’. Bezegová and J. Ivančo, An extension of regular supermagic graphs, Discrete Math. 310 (2010) 3571–3578. doi:10.1016/j.disc.2010.09.005[Crossref] Zbl1200.05199
  2. [2] L’. Bezegová and J. Ivančo, On conservative and supermagic graphs, Discrete Math. 311 (2011) 2428–2436. doi:10.1016/j.disc.2011.07.014[Crossref] Zbl1238.05226
  3. [3] R. Bodendiek and G. Walther, Arithmetisch antimagische graphen, in: Graphentheorie III, K. Wagner, R. Bodendiek (Ed(s)), (BI-Wiss. Verl., Mannheim, 1993). 
  4. [4] R. Bodendiek and G. Walther, On arithmetic antimagic edge labelings of graphs, Mitt. Math. Ges. Hamburg 17 (1998) 85–99. Zbl0946.05075
  5. [5] F. Boesch and R. Tindell, Circulants and their connectivities, J. Graph Theory 8 (1984) 487–499. doi:10.1002/jgt.3190080406[Crossref] Zbl0549.05048
  6. [6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) #DS6. Zbl0953.05067
  7. [7] J. Ivančo, On supermagic regular graphs, Math. Bohem. 125 (2000) 99–114. Zbl0963.05121
  8. [8] J. Ivančo, A construction of supermagic graphs, AKCE Int. J. Graphs Comb. 6 (2009) 91–102. Zbl1210.05145
  9. [9] J. Ivančo and A. Semaničová, Some constructions of supermagic graphs using antimagic graphs, SUT J. Math. 42 (2006) 177–186. Zbl1136.05065
  10. [10] E. Munarini, C.P. Cippo, A. Scagliola and N.Z. Salvi, Double graphs, Discrete Math. 308 (2008) 242–254. doi:10.1016/j.disc.2006.11.038[WoS][Crossref] Zbl1131.05042
  11. [11] J. Sedláček, Problem 27, in: Theory of Graphs and Its Applications, Proc. Symp. Smolenice (Praha, 1963) 163–164. 
  12. [12] A. Semaničová, On magic and supermagic circulant graphs, Discrete Math. 306 (2006) 2263–2269. doi:10.1016/j.disc.2006.04.011[Crossref] Zbl1103.05078
  13. [13] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031–1059. doi:10.4153/CJM-1966-104-7[Crossref] Zbl0149.21401
  14. [14] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427–438. doi:10.4153/CJM-1967-035-9[Crossref] Zbl0162.27801

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.