Supermagic Generalized Double Graphs 1
Discussiones Mathematicae Graph Theory (2016)
- Volume: 36, Issue: 1, page 211-225
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topJaroslav Ivančo. "Supermagic Generalized Double Graphs 1." Discussiones Mathematicae Graph Theory 36.1 (2016): 211-225. <http://eudml.org/doc/276979>.
@article{JaroslavIvančo2016,
abstract = {A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.},
author = {Jaroslav Ivančo},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {double graphs; supermagic graphs; degree-magic graphs},
language = {eng},
number = {1},
pages = {211-225},
title = {Supermagic Generalized Double Graphs 1},
url = {http://eudml.org/doc/276979},
volume = {36},
year = {2016},
}
TY - JOUR
AU - Jaroslav Ivančo
TI - Supermagic Generalized Double Graphs 1
JO - Discussiones Mathematicae Graph Theory
PY - 2016
VL - 36
IS - 1
SP - 211
EP - 225
AB - A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.
LA - eng
KW - double graphs; supermagic graphs; degree-magic graphs
UR - http://eudml.org/doc/276979
ER -
References
top- [1] L’. Bezegová and J. Ivančo, An extension of regular supermagic graphs, Discrete Math. 310 (2010) 3571–3578. doi:10.1016/j.disc.2010.09.005[Crossref] Zbl1200.05199
- [2] L’. Bezegová and J. Ivančo, On conservative and supermagic graphs, Discrete Math. 311 (2011) 2428–2436. doi:10.1016/j.disc.2011.07.014[Crossref] Zbl1238.05226
- [3] R. Bodendiek and G. Walther, Arithmetisch antimagische graphen, in: Graphentheorie III, K. Wagner, R. Bodendiek (Ed(s)), (BI-Wiss. Verl., Mannheim, 1993).
- [4] R. Bodendiek and G. Walther, On arithmetic antimagic edge labelings of graphs, Mitt. Math. Ges. Hamburg 17 (1998) 85–99. Zbl0946.05075
- [5] F. Boesch and R. Tindell, Circulants and their connectivities, J. Graph Theory 8 (1984) 487–499. doi:10.1002/jgt.3190080406[Crossref] Zbl0549.05048
- [6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) #DS6. Zbl0953.05067
- [7] J. Ivančo, On supermagic regular graphs, Math. Bohem. 125 (2000) 99–114. Zbl0963.05121
- [8] J. Ivančo, A construction of supermagic graphs, AKCE Int. J. Graphs Comb. 6 (2009) 91–102. Zbl1210.05145
- [9] J. Ivančo and A. Semaničová, Some constructions of supermagic graphs using antimagic graphs, SUT J. Math. 42 (2006) 177–186. Zbl1136.05065
- [10] E. Munarini, C.P. Cippo, A. Scagliola and N.Z. Salvi, Double graphs, Discrete Math. 308 (2008) 242–254. doi:10.1016/j.disc.2006.11.038[WoS][Crossref] Zbl1131.05042
- [11] J. Sedláček, Problem 27, in: Theory of Graphs and Its Applications, Proc. Symp. Smolenice (Praha, 1963) 163–164.
- [12] A. Semaničová, On magic and supermagic circulant graphs, Discrete Math. 306 (2006) 2263–2269. doi:10.1016/j.disc.2006.04.011[Crossref] Zbl1103.05078
- [13] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031–1059. doi:10.4153/CJM-1966-104-7[Crossref] Zbl0149.21401
- [14] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427–438. doi:10.4153/CJM-1967-035-9[Crossref] Zbl0162.27801
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.