On Spectra Of Variants Of The Corona Of Two Graphs And Some New Equienergetic Graphs
Chandrashekar Adiga; B.R. Rakshith
Discussiones Mathematicae Graph Theory (2016)
- Volume: 36, Issue: 1, page 127-140
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topChandrashekar Adiga, and B.R. Rakshith. "On Spectra Of Variants Of The Corona Of Two Graphs And Some New Equienergetic Graphs." Discussiones Mathematicae Graph Theory 36.1 (2016): 127-140. <http://eudml.org/doc/276980>.
@article{ChandrashekarAdiga2016,
abstract = {Let G and H be two graphs. The join G ∨ H is the graph obtained by joining every vertex of G with every vertex of H. The corona G ○ H is the graph obtained by taking one copy of G and |V (G)| copies of H and joining the i-th vertex of G to every vertex in the i-th copy of H. The neighborhood corona G★H is the graph obtained by taking one copy of G and |V (G)| copies of H and joining the neighbors of the i-th vertex of G to every vertex in the i-th copy of H. The edge corona G ◇ H is the graph obtained by taking one copy of G and |E(G)| copies of H and joining each terminal vertex of i-th edge of G to every vertex in the i-th copy of H. Let G1, G2, G3 and G4 be regular graphs with disjoint vertex sets. In this paper we compute the spectrum of (G1 ∨ G2) ∪ (G1 ★ G3), (G1 ∨ G2) ∪ (G2 ★ G3) ∪ (G1 ★ G4), (G1 ∨G2)∪(G1 ○G3), (G1 ∨G2)∪(G2 ○G3)∪(G1 ○G4), (G1 ∨G2)∪(G1 ◇G3), (G1 ∨ G2) ∪ (G2 ◇ G3) ∪ (G1 ◇ G4), (G1 ∨ G2) ∪ (G2 ○ G3) ∪ (G1 ★ G3), (G1 ∨ G2) ∪ (G2 ○ G3) ∪ (G1 ◇ G4) and (G1 ∨ G2) ∪ (G2 ★ G3) ∪ (G1 ◇ G4). As an application, we show that there exist some new pairs of equienergetic graphs on n vertices for all n ≥ 11.},
author = {Chandrashekar Adiga, B.R. Rakshith},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {spectrum; corona; neighbourhood corona; edge corona; energy of a graph; equienergetic graphs},
language = {eng},
number = {1},
pages = {127-140},
title = {On Spectra Of Variants Of The Corona Of Two Graphs And Some New Equienergetic Graphs},
url = {http://eudml.org/doc/276980},
volume = {36},
year = {2016},
}
TY - JOUR
AU - Chandrashekar Adiga
AU - B.R. Rakshith
TI - On Spectra Of Variants Of The Corona Of Two Graphs And Some New Equienergetic Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2016
VL - 36
IS - 1
SP - 127
EP - 140
AB - Let G and H be two graphs. The join G ∨ H is the graph obtained by joining every vertex of G with every vertex of H. The corona G ○ H is the graph obtained by taking one copy of G and |V (G)| copies of H and joining the i-th vertex of G to every vertex in the i-th copy of H. The neighborhood corona G★H is the graph obtained by taking one copy of G and |V (G)| copies of H and joining the neighbors of the i-th vertex of G to every vertex in the i-th copy of H. The edge corona G ◇ H is the graph obtained by taking one copy of G and |E(G)| copies of H and joining each terminal vertex of i-th edge of G to every vertex in the i-th copy of H. Let G1, G2, G3 and G4 be regular graphs with disjoint vertex sets. In this paper we compute the spectrum of (G1 ∨ G2) ∪ (G1 ★ G3), (G1 ∨ G2) ∪ (G2 ★ G3) ∪ (G1 ★ G4), (G1 ∨G2)∪(G1 ○G3), (G1 ∨G2)∪(G2 ○G3)∪(G1 ○G4), (G1 ∨G2)∪(G1 ◇G3), (G1 ∨ G2) ∪ (G2 ◇ G3) ∪ (G1 ◇ G4), (G1 ∨ G2) ∪ (G2 ○ G3) ∪ (G1 ★ G3), (G1 ∨ G2) ∪ (G2 ○ G3) ∪ (G1 ◇ G4) and (G1 ∨ G2) ∪ (G2 ★ G3) ∪ (G1 ◇ G4). As an application, we show that there exist some new pairs of equienergetic graphs on n vertices for all n ≥ 11.
LA - eng
KW - spectrum; corona; neighbourhood corona; edge corona; energy of a graph; equienergetic graphs
UR - http://eudml.org/doc/276980
ER -
References
top- [1] C. Adiga, R. Balakrishnan and W. So, The skew energy of a digraph, Linear Algebra Appl. 432 (2010) 1825–1835. doi:10.1016/j.laa.2009.11.034[WoS][Crossref] Zbl1217.05131
- [2] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287–295. doi:10.1016/j.laa.2004.02.038[Crossref] Zbl1041.05046
- [3] R.B. Bapat, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc. 1 (2004) 129–132. Zbl1257.05082
- [4] S. Barik, S. Pati and B.K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math. 21 (2007) 47–56. doi:10.1137/050624029[WoS][Crossref] Zbl1138.05046
- [5] S.B. Bozkurt, A.D. Gungor and I. Gutman, Note on distance energy of graphs, MATCH. Commun. Math. Comput. Chem. 64 (2010) 129–134. Zbl1265.05352
- [6] V. Brankov, D. Stevanović and I. Gutman, Equienergetic chemical trees, J. Serb. Chem. Soc. 69 (2004) 549–553. doi:10.2298/JSC0407549B[Crossref]
- [7] S.-Y. Cui and G.-X. Tian, The spectrum and the signless Laplacian spectrum of coronae, Linear Algebra Appl. 437 (2012) 1692–1703. doi:10.1016/j.laa.2012.05.019[Crossref][WoS]
- [8] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Application (Academic Press, New York, 1980).
- [9] W.L. Ferrar, A Text-Book of Determinants, Matrices and Algebraic Forms (Oxford University Press, 1953). Zbl0084.01501
- [10] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322–325. doi:10.1007/BF01844162[Crossref] Zbl0198.29302
- [11] S. Gong, X. Li, G. Xu, I. Gutman and B. Furtula, Borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 74 (2015) 321–332.
- [12] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz 103 (1978) 1–22.
- [13] I. Gutman, The energy of a graph: old and new results, in: Algebraic Combinatorics and Applications, A. Betten, A. Kohnert, R. Laue and A. Wassermann (Ed(s)), (Berlin, Springer, 2000) 196–211. Zbl0974.05054
- [14] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441–456. doi:10.2298/JSC0503441G[Crossref]
- [15] I. Gutman, D. Kiani, M. Mirzakhah and B. Zhou, On incidence energy of a graph, Linear Algebra Appl. 431 (2009) 1223–1233. doi:10.1016/j.laa.2009.04.019[WoS][Crossref] Zbl1175.05084
- [16] Y. Hou and W.-C. Shiu, The spectrum of the edge corona of two graphs, Electron. J. Linear Algebra 20 (2010) 586–594. doi:10.13001/1081-3810.1395[Crossref] Zbl1205.05144
- [17] G. Indulal, The spectrum of neighborhood corona of graphs, Kragujevac J. Math. 35 (2011) 493–500. Zbl1289.05283
- [18] G. Indulal and A. Vijayakumar, On a pair of equienergetic graphs, MATCH. Commun. Math. Comput. Chem. 55 (2006) 83–90. Zbl1106.05061
- [19] X. Li, Y. Shi and I. Gutman, Graph Energy (Springer, New York, 2012). doi:10.1007/978-1-4614-4220-2[Crossref]
- [20] X. Li, M. Wei and S. Gong, A computer search for the borderenergetic graphs of order 10, MATCH Commun. Math. Comput. Chem. 74 (2015) 333–342.
- [21] B. Liu, Y. Huang and Z. You, A survey on the Laplacian-energy-like invariant, MATCH. Commun. Math. Comput. Chem. 66 (2011) 713–730.
- [22] J. Liu and B. Liu, On a pair of equienergetic graphs, MATCH. Commun. Math. Comput. Chem. 59 (2008) 275–278. Zbl1273.92088
- [23] X. Liu and S. Zhou, Spectra of the neighbourhood corona of two graphs, Linear Multilinear Algebra 62 (2014) 1205–1219. doi:10.1080/03081087.2013.816304[WoS][Crossref]
- [24] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011) 998–1007. doi:10.1016/j.laa.2011.02.007[WoS][Crossref] Zbl1221.05239
- [25] H.S. Ramane, I. Gutman, H.B. Walikar and S.B. Halkarni, Equienergetic complement graphs, Kragujevac J. Sci. 27 (2005) 67–74.
- [26] H.S. Ramane and H.B. Walikar, Construction of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 203–210. Zbl1150.05029
- [27] D. Stevanović, Energy and NEPS of graphs, Linear Multilinear Algebra 53 (2005) 67–74. doi:10.1080/03081080410001714705[WoS][Crossref] Zbl1061.05060
- [28] D. Stevanović and I. Stanković, Remarks on hyperenergetic circulant graphs, Linear Algebra Appl. 400 (2005) 345–348. doi:10.1016/j.laa.2005.01.001[Crossref]
- [29] L. Xu and Y. Hou, Equienergetic bipartite graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 363–370. Zbl1150.05041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.