Products Of Digraphs And Their Competition Graphs

Martin Sonntag; Hanns-Martin Teichert

Discussiones Mathematicae Graph Theory (2016)

  • Volume: 36, Issue: 1, page 43-58
  • ISSN: 2083-5892

Abstract

top
If D = (V, A) is a digraph, its competition graph (with loops) CGl(D) has the vertex set V and {u, v} ⊆ V is an edge of CGl(D) if and only if there is a vertex w ∈ V such that (u, w), (v, w) ∈ A. In CGl(D), loops {v} are allowed only if v is the only predecessor of a certain vertex w ∈ V. For several products D1 ⚬ D2 of digraphs D1 and D2, we investigate the relations between the competition graphs of the factors D1, D2 and the competition graph of their product D1 ⚬ D2.

How to cite

top

Martin Sonntag, and Hanns-Martin Teichert. "Products Of Digraphs And Their Competition Graphs." Discussiones Mathematicae Graph Theory 36.1 (2016): 43-58. <http://eudml.org/doc/276981>.

@article{MartinSonntag2016,
abstract = {If D = (V, A) is a digraph, its competition graph (with loops) CGl(D) has the vertex set V and \{u, v\} ⊆ V is an edge of CGl(D) if and only if there is a vertex w ∈ V such that (u, w), (v, w) ∈ A. In CGl(D), loops \{v\} are allowed only if v is the only predecessor of a certain vertex w ∈ V. For several products D1 ⚬ D2 of digraphs D1 and D2, we investigate the relations between the competition graphs of the factors D1, D2 and the competition graph of their product D1 ⚬ D2.},
author = {Martin Sonntag, Hanns-Martin Teichert},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {competition graph; product of digraphs},
language = {eng},
number = {1},
pages = {43-58},
title = {Products Of Digraphs And Their Competition Graphs},
url = {http://eudml.org/doc/276981},
volume = {36},
year = {2016},
}

TY - JOUR
AU - Martin Sonntag
AU - Hanns-Martin Teichert
TI - Products Of Digraphs And Their Competition Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2016
VL - 36
IS - 1
SP - 43
EP - 58
AB - If D = (V, A) is a digraph, its competition graph (with loops) CGl(D) has the vertex set V and {u, v} ⊆ V is an edge of CGl(D) if and only if there is a vertex w ∈ V such that (u, w), (v, w) ∈ A. In CGl(D), loops {v} are allowed only if v is the only predecessor of a certain vertex w ∈ V. For several products D1 ⚬ D2 of digraphs D1 and D2, we investigate the relations between the competition graphs of the factors D1, D2 and the competition graph of their product D1 ⚬ D2.
LA - eng
KW - competition graph; product of digraphs
UR - http://eudml.org/doc/276981
ER -

References

top
  1. [1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2001). Zbl0958.05002
  2. [2] J.E. Cohen, Interval graphs and food webs: a finding and a problem (Rand Corporation Document 17696-PR, Santa Monica, CA, 1968). 
  3. [3] W. Imrich and S. Klavžar, Product Graphs (John Wiley & Sons, Inc., New York, 2000). 
  4. [4] S.R. Kim, The competition number and its variants, in: Quo vadis, graph theory?, J. Gimbel, J.W. Kennedy and L.V. Quintas (Eds.), Ann. Discrete Math. 55 (1993) 313–326. doi:10.1016/s0167-5060(08)70396-0[Crossref] 
  5. [5] J.R. Lundgren, Food webs, competition graphs, competition-common enemy graphs and niche graphs, in: Applications of combinatorics and graph theory to the biological and social sciences, F. Roberts (Ed.), (IMA 17, Springer, New York, 1989) 221–243. doi:10.1007/978-1-4684-6381-1_9[Crossref] 
  6. [6] F.S. Roberts, Competition graphs and phylogeny graphs, in: Graph theory and combinatorial biology, L. Lovász (Ed.), (Proc. Int. Colloqu. Balatonlelle (Hungary) 1996, Bolyai Soc. Math. Studies 7, Budapest, 1999) 333–362. Zbl0924.05032
  7. [7] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324–329. doi:10.1016/j.dam.2004.02.010[Crossref] 
  8. [8] M. Sonntag and H.-M. Teichert, Competition hypergraphs of products of digraphs, Graphs Combin. 25 (2009) 611–624. doi:10.1007/s00373-005-0868-9[Crossref] Zbl1197.05101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.