Oscillation properties for a scalar linear difference equation of mixed type
Leonid Berezansky; Sandra Pinelas
Mathematica Bohemica (2016)
- Volume: 141, Issue: 2, page 169-182
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBerezansky, Leonid, and Pinelas, Sandra. "Oscillation properties for a scalar linear difference equation of mixed type." Mathematica Bohemica 141.2 (2016): 169-182. <http://eudml.org/doc/276983>.
@article{Berezansky2016,
abstract = {The aim of this work is to study oscillation properties for a scalar linear difference equation of mixed type \[ \Delta x(n)+\sum \_\{k=-p\}^\{q\}a\_\{k\}(n)x(n+k)=0,\quad n>n\_\{0\}, \]
where $\Delta x(n)=x(n+1)-x(n)$ is the difference operator and $\lbrace a_\{k\}(n)\rbrace $ are sequences of real numbers for $k=-p,\ldots ,q$, and $p>0$, $q\ge 0$. We obtain sufficient conditions for the existence of oscillatory and nonoscillatory solutions. Some asymptotic properties are introduced.},
author = {Berezansky, Leonid, Pinelas, Sandra},
journal = {Mathematica Bohemica},
keywords = {oscillation; difference equation; mixed type; asymptotic behavior},
language = {eng},
number = {2},
pages = {169-182},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation properties for a scalar linear difference equation of mixed type},
url = {http://eudml.org/doc/276983},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Berezansky, Leonid
AU - Pinelas, Sandra
TI - Oscillation properties for a scalar linear difference equation of mixed type
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 2
SP - 169
EP - 182
AB - The aim of this work is to study oscillation properties for a scalar linear difference equation of mixed type \[ \Delta x(n)+\sum _{k=-p}^{q}a_{k}(n)x(n+k)=0,\quad n>n_{0}, \]
where $\Delta x(n)=x(n+1)-x(n)$ is the difference operator and $\lbrace a_{k}(n)\rbrace $ are sequences of real numbers for $k=-p,\ldots ,q$, and $p>0$, $q\ge 0$. We obtain sufficient conditions for the existence of oscillatory and nonoscillatory solutions. Some asymptotic properties are introduced.
LA - eng
KW - oscillation; difference equation; mixed type; asymptotic behavior
UR - http://eudml.org/doc/276983
ER -
References
top- Agarwal, R. P., Difference Equations and Inequalities: Theory, Methods, and Applications, Pure and Applied Mathematics 228 Marcel Dekker, New York (2000). (2000) Zbl0952.39001MR1740241
- Asada, T., Yoshida, H., 10.1155/S1026022600000583, Discrete Dyn. Nat. Soc. 5 (2001), 281-295. (2001) Zbl0980.34070DOI10.1155/S1026022600000583
- Berezansky, L., Braverman, E., 10.1006/jmaa.1997.5879, J. Math. Anal. Appl. 220 (1998), 719-740. (1998) Zbl0915.34064MR1614948DOI10.1006/jmaa.1997.5879
- k, J. Diblí, Janglajew, K., ková, M. Kúdelčí, 10.3934/dcdsb.2014.19.2461, Discrete Contin. Dyn. Syst. Ser. B 19 (2014), 2461-2467. (2014) MR3275005DOI10.3934/dcdsb.2014.19.2461
- k, J. Diblí, ková, M. Kúdelčí, 10.1016/j.aml.2014.06.020, Appl. Math. Lett. 38 (2014), 144-148. (2014) MR3258218DOI10.1016/j.aml.2014.06.020
- Dubois, D., Stecke, K. E., 10.1007/BF02248590, Ann. Oper. Res. 26 (1990), 323-347. (1990) MR1087827DOI10.1007/BF02248590
- Ferreira, J. M., Pinelas, S., Oscillatory mixed difference systems, Adv. Difference Equ. (2006), 1-18. (2006) Zbl1139.39011MR2238984
- Frisch, R., Holme, H., 10.2307/1907258, Econometrica 3 (1935), 225-239. (1935) DOI10.2307/1907258
- Gandolfo, G., Economic Dynamics, Berlin Springer (2010). (2010) Zbl1177.91094MR2841165
- Iakovleva, V., Vanegas, C. J., On the solution of differential equations with delayed and advanced arguments, Electron. J. Differ. Equ. 13 (2005), 57-63. (2005) Zbl1092.34549MR2312906
- James, R. W., Belz, M. H., 10.2307/1905410, Econometrica 6 (1938), 326-343. (1938) DOI10.2307/1905410
- Krisztin, T., 10.1006/jmaa.2000.6735, J. Math. Anal. Appl. 245 (2000), 326-345. (2000) Zbl0955.34054MR1758543DOI10.1006/jmaa.2000.6735
- Ladde, G. S., Lakshmikantham, V., Zhang, B. G., Oscillation Theory of Differential Equations with Deviating Arguments, Pure and Applied Mathematics 110 Marcel Dekker, New York (1987). (1987) Zbl0832.34071MR1017244
- Rogovchenko, Y. V., 10.1006/jmaa.1998.6148, J. Math. Anal. Appl. 229 (1999), 399-416. (1999) Zbl0921.34034MR1666412DOI10.1006/jmaa.1998.6148
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.