Oscillation properties for a scalar linear difference equation of mixed type

Leonid Berezansky; Sandra Pinelas

Mathematica Bohemica (2016)

  • Volume: 141, Issue: 2, page 169-182
  • ISSN: 0862-7959

Abstract

top
The aim of this work is to study oscillation properties for a scalar linear difference equation of mixed type Δ x ( n ) + k = - p q a k ( n ) x ( n + k ) = 0 , n > n 0 , where Δ x ( n ) = x ( n + 1 ) - x ( n ) is the difference operator and { a k ( n ) } are sequences of real numbers for k = - p , ... , q , and p > 0 , q 0 . We obtain sufficient conditions for the existence of oscillatory and nonoscillatory solutions. Some asymptotic properties are introduced.

How to cite

top

Berezansky, Leonid, and Pinelas, Sandra. "Oscillation properties for a scalar linear difference equation of mixed type." Mathematica Bohemica 141.2 (2016): 169-182. <http://eudml.org/doc/276983>.

@article{Berezansky2016,
abstract = {The aim of this work is to study oscillation properties for a scalar linear difference equation of mixed type \[ \Delta x(n)+\sum \_\{k=-p\}^\{q\}a\_\{k\}(n)x(n+k)=0,\quad n>n\_\{0\}, \] where $\Delta x(n)=x(n+1)-x(n)$ is the difference operator and $\lbrace a_\{k\}(n)\rbrace $ are sequences of real numbers for $k=-p,\ldots ,q$, and $p>0$, $q\ge 0$. We obtain sufficient conditions for the existence of oscillatory and nonoscillatory solutions. Some asymptotic properties are introduced.},
author = {Berezansky, Leonid, Pinelas, Sandra},
journal = {Mathematica Bohemica},
keywords = {oscillation; difference equation; mixed type; asymptotic behavior},
language = {eng},
number = {2},
pages = {169-182},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation properties for a scalar linear difference equation of mixed type},
url = {http://eudml.org/doc/276983},
volume = {141},
year = {2016},
}

TY - JOUR
AU - Berezansky, Leonid
AU - Pinelas, Sandra
TI - Oscillation properties for a scalar linear difference equation of mixed type
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 2
SP - 169
EP - 182
AB - The aim of this work is to study oscillation properties for a scalar linear difference equation of mixed type \[ \Delta x(n)+\sum _{k=-p}^{q}a_{k}(n)x(n+k)=0,\quad n>n_{0}, \] where $\Delta x(n)=x(n+1)-x(n)$ is the difference operator and $\lbrace a_{k}(n)\rbrace $ are sequences of real numbers for $k=-p,\ldots ,q$, and $p>0$, $q\ge 0$. We obtain sufficient conditions for the existence of oscillatory and nonoscillatory solutions. Some asymptotic properties are introduced.
LA - eng
KW - oscillation; difference equation; mixed type; asymptotic behavior
UR - http://eudml.org/doc/276983
ER -

References

top
  1. Agarwal, R. P., Difference Equations and Inequalities: Theory, Methods, and Applications, Pure and Applied Mathematics 228 Marcel Dekker, New York (2000). (2000) Zbl0952.39001MR1740241
  2. Asada, T., Yoshida, H., 10.1155/S1026022600000583, Discrete Dyn. Nat. Soc. 5 (2001), 281-295. (2001) Zbl0980.34070DOI10.1155/S1026022600000583
  3. Berezansky, L., Braverman, E., 10.1006/jmaa.1997.5879, J. Math. Anal. Appl. 220 (1998), 719-740. (1998) Zbl0915.34064MR1614948DOI10.1006/jmaa.1997.5879
  4. k, J. Diblí, Janglajew, K., ková, M. Kúdelčí, 10.3934/dcdsb.2014.19.2461, Discrete Contin. Dyn. Syst. Ser. B 19 (2014), 2461-2467. (2014) MR3275005DOI10.3934/dcdsb.2014.19.2461
  5. k, J. Diblí, ková, M. Kúdelčí, 10.1016/j.aml.2014.06.020, Appl. Math. Lett. 38 (2014), 144-148. (2014) MR3258218DOI10.1016/j.aml.2014.06.020
  6. Dubois, D., Stecke, K. E., 10.1007/BF02248590, Ann. Oper. Res. 26 (1990), 323-347. (1990) MR1087827DOI10.1007/BF02248590
  7. Ferreira, J. M., Pinelas, S., Oscillatory mixed difference systems, Adv. Difference Equ. (2006), 1-18. (2006) Zbl1139.39011MR2238984
  8. Frisch, R., Holme, H., 10.2307/1907258, Econometrica 3 (1935), 225-239. (1935) DOI10.2307/1907258
  9. Gandolfo, G., Economic Dynamics, Berlin Springer (2010). (2010) Zbl1177.91094MR2841165
  10. Iakovleva, V., Vanegas, C. J., On the solution of differential equations with delayed and advanced arguments, Electron. J. Differ. Equ. 13 (2005), 57-63. (2005) Zbl1092.34549MR2312906
  11. James, R. W., Belz, M. H., 10.2307/1905410, Econometrica 6 (1938), 326-343. (1938) DOI10.2307/1905410
  12. Krisztin, T., 10.1006/jmaa.2000.6735, J. Math. Anal. Appl. 245 (2000), 326-345. (2000) Zbl0955.34054MR1758543DOI10.1006/jmaa.2000.6735
  13. Ladde, G. S., Lakshmikantham, V., Zhang, B. G., Oscillation Theory of Differential Equations with Deviating Arguments, Pure and Applied Mathematics 110 Marcel Dekker, New York (1987). (1987) Zbl0832.34071MR1017244
  14. Rogovchenko, Y. V., 10.1006/jmaa.1998.6148, J. Math. Anal. Appl. 229 (1999), 399-416. (1999) Zbl0921.34034MR1666412DOI10.1006/jmaa.1998.6148

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.