On the universal constant in the Katz-Petrov and Osipov inequalities
Discussiones Mathematicae Probability and Statistics (2011)
- Volume: 31, Issue: 1-2, page 29-39
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topVictor Korolev, and Sergey Popov. "On the universal constant in the Katz-Petrov and Osipov inequalities." Discussiones Mathematicae Probability and Statistics 31.1-2 (2011): 29-39. <http://eudml.org/doc/277014>.
@article{VictorKorolev2011,
abstract = {Upper estimates are presented for the universal constant in the Katz-Petrov and Osipov inequalities which do not exceed 3.1905.},
author = {Victor Korolev, Sergey Popov},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {central limit theorem; convergence rate estimate; absolute constant; Katz-Petrov inequality; Osipov inequality},
language = {eng},
number = {1-2},
pages = {29-39},
title = {On the universal constant in the Katz-Petrov and Osipov inequalities},
url = {http://eudml.org/doc/277014},
volume = {31},
year = {2011},
}
TY - JOUR
AU - Victor Korolev
AU - Sergey Popov
TI - On the universal constant in the Katz-Petrov and Osipov inequalities
JO - Discussiones Mathematicae Probability and Statistics
PY - 2011
VL - 31
IS - 1-2
SP - 29
EP - 39
AB - Upper estimates are presented for the universal constant in the Katz-Petrov and Osipov inequalities which do not exceed 3.1905.
LA - eng
KW - central limit theorem; convergence rate estimate; absolute constant; Katz-Petrov inequality; Osipov inequality
UR - http://eudml.org/doc/277014
ER -
References
top- [1] R.N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions (New York, Wiley, 1976).
- [2] L.H.Y. Chen and Q.M. Shao, A non-uniform Berry-Esseen bound via Stein's method, Probability Theory and Related Fields 120 (2001) 236-254. Zbl0996.60029
- [3] W. Hoeffding, The extrema of the expected value of a function of independent random variables, Ann. Math. Statist. 19 (1948) 239-325.
- [4] M. Katz, Note on the Berry-Esseen theorem, Annals of Math. Statist. 39 (4) (1963) 1348-1349.
- [5] V.Yu. Korolev and I.G. Shevtsova, An improvement of the Berry-Esseen inequality with applications to Poisson and mixed Poisson random sums, Scandinavian Actuarial Journal, 2010. Online first: http://www.informaworld.com/10.1080/03461238.2010.485370, 04 June 2010. Zbl1277.60042
- [6] J.S. Nefedova and I.G. Shevtsova, On non-uniform estimates of convergence rate in the central limit theorem, Theory Probab. Appl. 56 (2011), to appear. Zbl1245.60030
- [7] L.V. Osipov, A refinement of the Lindeberg theorem, Theory Probab. Appl. 11 (2) (1966) 339-342.
- [8] L. Paditz, Bemerkungen zu einer Fehlerabschätzung im zentralen Grenzwertsatz, Wiss. Z. Hochschule für Verkehrswesen Friedrich List 27 (4) (1980) 829-837.
- [9] L. Paditz, On error-estimates in the central limit theorem for generalized linear discounting, Math. Operationsforsch. u. Statist., Ser. Statistics 15 (4) (1984) 601-610. Zbl0553.60030
- [10] L. Paditz, Über eine Fehlerabschätzung im zentralen Grenzwertsatz, Wiss. Z. Hochschule für Verkehrswesen Friedrich List Dresden 33 (2) (1986) 399-404. Zbl0606.60031
- [11] V.V. Petrov, An estimate of the deviation of the distribution of a sum of independent random variables from the normal law, Soviet Math. Dokl. 160 (5) (1965) 1013-1015.
- [12] V.V. Petrov, Sums of Independent Random Variables (New York, Springer, 1975).
- [13] I.G. Shevtsova, A refinement of the estimates of the rate of convergence in the Lyapunov theorem, Doklady Mathematics 435 (1) (2010) 26-28.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.