On the universal constant in the Katz-Petrov and Osipov inequalities

Victor Korolev; Sergey Popov

Discussiones Mathematicae Probability and Statistics (2011)

  • Volume: 31, Issue: 1-2, page 29-39
  • ISSN: 1509-9423

Abstract

top
Upper estimates are presented for the universal constant in the Katz-Petrov and Osipov inequalities which do not exceed 3.1905.

How to cite

top

Victor Korolev, and Sergey Popov. "On the universal constant in the Katz-Petrov and Osipov inequalities." Discussiones Mathematicae Probability and Statistics 31.1-2 (2011): 29-39. <http://eudml.org/doc/277014>.

@article{VictorKorolev2011,
abstract = {Upper estimates are presented for the universal constant in the Katz-Petrov and Osipov inequalities which do not exceed 3.1905.},
author = {Victor Korolev, Sergey Popov},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {central limit theorem; convergence rate estimate; absolute constant; Katz-Petrov inequality; Osipov inequality},
language = {eng},
number = {1-2},
pages = {29-39},
title = {On the universal constant in the Katz-Petrov and Osipov inequalities},
url = {http://eudml.org/doc/277014},
volume = {31},
year = {2011},
}

TY - JOUR
AU - Victor Korolev
AU - Sergey Popov
TI - On the universal constant in the Katz-Petrov and Osipov inequalities
JO - Discussiones Mathematicae Probability and Statistics
PY - 2011
VL - 31
IS - 1-2
SP - 29
EP - 39
AB - Upper estimates are presented for the universal constant in the Katz-Petrov and Osipov inequalities which do not exceed 3.1905.
LA - eng
KW - central limit theorem; convergence rate estimate; absolute constant; Katz-Petrov inequality; Osipov inequality
UR - http://eudml.org/doc/277014
ER -

References

top
  1. [1] R.N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions (New York, Wiley, 1976). 
  2. [2] L.H.Y. Chen and Q.M. Shao, A non-uniform Berry-Esseen bound via Stein's method, Probability Theory and Related Fields 120 (2001) 236-254. Zbl0996.60029
  3. [3] W. Hoeffding, The extrema of the expected value of a function of independent random variables, Ann. Math. Statist. 19 (1948) 239-325. 
  4. [4] M. Katz, Note on the Berry-Esseen theorem, Annals of Math. Statist. 39 (4) (1963) 1348-1349. 
  5. [5] V.Yu. Korolev and I.G. Shevtsova, An improvement of the Berry-Esseen inequality with applications to Poisson and mixed Poisson random sums, Scandinavian Actuarial Journal, 2010. Online first: http://www.informaworld.com/10.1080/03461238.2010.485370, 04 June 2010. Zbl1277.60042
  6. [6] J.S. Nefedova and I.G. Shevtsova, On non-uniform estimates of convergence rate in the central limit theorem, Theory Probab. Appl. 56 (2011), to appear. Zbl1245.60030
  7. [7] L.V. Osipov, A refinement of the Lindeberg theorem, Theory Probab. Appl. 11 (2) (1966) 339-342. 
  8. [8] L. Paditz, Bemerkungen zu einer Fehlerabschätzung im zentralen Grenzwertsatz, Wiss. Z. Hochschule für Verkehrswesen Friedrich List 27 (4) (1980) 829-837. 
  9. [9] L. Paditz, On error-estimates in the central limit theorem for generalized linear discounting, Math. Operationsforsch. u. Statist., Ser. Statistics 15 (4) (1984) 601-610. Zbl0553.60030
  10. [10] L. Paditz, Über eine Fehlerabschätzung im zentralen Grenzwertsatz, Wiss. Z. Hochschule für Verkehrswesen Friedrich List Dresden 33 (2) (1986) 399-404. Zbl0606.60031
  11. [11] V.V. Petrov, An estimate of the deviation of the distribution of a sum of independent random variables from the normal law, Soviet Math. Dokl. 160 (5) (1965) 1013-1015. 
  12. [12] V.V. Petrov, Sums of Independent Random Variables (New York, Springer, 1975). 
  13. [13] I.G. Shevtsova, A refinement of the estimates of the rate of convergence in the Lyapunov theorem, Doklady Mathematics 435 (1) (2010) 26-28. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.