Some methods of constructing kernels in statistical learning
Discussiones Mathematicae Probability and Statistics (2010)
- Volume: 30, Issue: 2, page 179-201
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Abramowitz and I.A. Stegun, Chs. Legendre functions and orthogonal polynomials in Handbook of mathematical functions, Dover Publications, New York 1972.
- [2] B.E. Boser, I.M. Guyon and V.N. Guyon, A training algorithm for optimal margin classifiers, in D. Haussler, eds. 5th Annual ACM Workshop on COLT. ACM Press, Pittsburgh (1992), 144-152.
- [3] C.J.C. Burges, Geometry and invariance in kernel based methods in: Schölkopf, B. Burges, C.J.C. Smola, A.J. eds. Advances in kernel methods - support vector learning. MIT Press, Cambridge (1999), 89-116.
- [4] C. Cortes and V. Vapnik, Support-Vector Networks, Machine Learning 20 (1995), 273-297.
- [5] R. Herbrich, Learning Kernel Classifiers, MIT Press, London 2002. Zbl1063.62092
- [6] T. Hofmann, B. Schölkopf and A.J. Smola, Kernels methods in machine learning, Annals of Statistics 36 (2008), 1171-1220. Zbl1151.30007
- [7] Z. Ovari, Kernels, eigenvalues and support vector machines, Honours thesis, Australian National University, Canberra 2000.
- [8] B. Schölkopf and A.J. Smola, Learning with Kernels, MIT Press, London 2002.
- [9] B. Schölkopf, A.J. Smola and K.R. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation 10 (1998), 1299-1319.
- [10] I.J. Schoenberg, Positive definite functions on spheres, Duke Mathematical Journal 9 (1942), 96-108. Zbl0063.06808
- [11] A. Tarantola, Inverse problem theory and methods for model paramenter estimation, SIAM, Philadelphia 2005. Zbl1074.65013
- [12] M. Zu, Kernels and ensembles: perspective on statistical learning, American Statistician 62 (2008), 97-109.