Set-valued Stratonovich integral

Anna Góralczyk; Jerzy Motyl

Discussiones Mathematicae Probability and Statistics (2006)

  • Volume: 26, Issue: 1, page 63-81
  • ISSN: 1509-9423

Abstract

top
The purpose of the paper is to introduce a set-valued Stratonovich integral driven by a one-dimensional Brownian motion. We discuss the existence of this integral and investigate its properties.

How to cite

top

Anna Góralczyk, and Jerzy Motyl. "Set-valued Stratonovich integral." Discussiones Mathematicae Probability and Statistics 26.1 (2006): 63-81. <http://eudml.org/doc/277051>.

@article{AnnaGóralczyk2006,
abstract = {The purpose of the paper is to introduce a set-valued Stratonovich integral driven by a one-dimensional Brownian motion. We discuss the existence of this integral and investigate its properties.},
author = {Anna Góralczyk, Jerzy Motyl},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {set-valued function; Hukuhara differential; selection of a set-valued map; semimartingale; Stratonovich integral},
language = {eng},
number = {1},
pages = {63-81},
title = {Set-valued Stratonovich integral},
url = {http://eudml.org/doc/277051},
volume = {26},
year = {2006},
}

TY - JOUR
AU - Anna Góralczyk
AU - Jerzy Motyl
TI - Set-valued Stratonovich integral
JO - Discussiones Mathematicae Probability and Statistics
PY - 2006
VL - 26
IS - 1
SP - 63
EP - 81
AB - The purpose of the paper is to introduce a set-valued Stratonovich integral driven by a one-dimensional Brownian motion. We discuss the existence of this integral and investigate its properties.
LA - eng
KW - set-valued function; Hukuhara differential; selection of a set-valued map; semimartingale; Stratonovich integral
UR - http://eudml.org/doc/277051
ER -

References

top
  1. [1] J.P. Aubin, Dynamic Economic Theory, A viability Approach, Springer, Verlag, Berlin 1997. Zbl0876.90032
  2. [2] J.P. Aubin and A. Cellina, Differential Inclusions, Noordhoff, Leyden 1984. Zbl0538.34007
  3. [3] J.P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser Boston-Basel-Berlin 1990. Zbl0713.49021
  4. [4] H.T. Banks and M.Q. Jacobs, A diffenertial calculus for set-valued function, J. Math. Anal. Appl. 29 (1970), 246-272. Zbl0191.43302
  5. [5] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivar. Anal. 7 (1977), 149-182. Zbl0368.60006
  6. [6] M. Hukuhara, Intégration des applications measurables dont a valeur est un compact convexe, Funkcialaj Ekvacioj 10 (1967), 205-223. Zbl0161.24701
  7. [7] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ.-PWN, Dordrecht-Boston-London Warszawa 1991. Zbl0731.49001
  8. [8] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800. Zbl0891.93070
  9. [9] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Existence and regularity properties, Dynamic Syst. Appl. 12 (3-4) (2003), 405-432. Zbl1063.93047
  10. [10] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Viability and semimartingale issues, Dynamic Syst. Appl. 12 (3-4) (2003), 433-466. Zbl1064.93042
  11. [11] V. Lakshmikhantam, T. Gnana Bhaskar and D. Vasundhara, Theory of Set Differential Equations in Metric Space, (preprint) (2004). 
  12. [12] P. Protter, Stochastic Integration and Differential Equations: A New Approach, Springer, New York 1990. 
  13. [13] J. San Martin, One-dimensional Stratonovich differential equations, Ann. Probab. 21 (1) (1993), 509-553. Zbl0773.60049
  14. [14] E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist. 36 (1965), 1560-1564. Zbl0138.11201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.