Set-valued Stratonovich integral
Discussiones Mathematicae Probability and Statistics (2006)
- Volume: 26, Issue: 1, page 63-81
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topAnna Góralczyk, and Jerzy Motyl. "Set-valued Stratonovich integral." Discussiones Mathematicae Probability and Statistics 26.1 (2006): 63-81. <http://eudml.org/doc/277051>.
@article{AnnaGóralczyk2006,
abstract = {The purpose of the paper is to introduce a set-valued Stratonovich integral driven by a one-dimensional Brownian motion. We discuss the existence of this integral and investigate its properties.},
author = {Anna Góralczyk, Jerzy Motyl},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {set-valued function; Hukuhara differential; selection of a set-valued map; semimartingale; Stratonovich integral},
language = {eng},
number = {1},
pages = {63-81},
title = {Set-valued Stratonovich integral},
url = {http://eudml.org/doc/277051},
volume = {26},
year = {2006},
}
TY - JOUR
AU - Anna Góralczyk
AU - Jerzy Motyl
TI - Set-valued Stratonovich integral
JO - Discussiones Mathematicae Probability and Statistics
PY - 2006
VL - 26
IS - 1
SP - 63
EP - 81
AB - The purpose of the paper is to introduce a set-valued Stratonovich integral driven by a one-dimensional Brownian motion. We discuss the existence of this integral and investigate its properties.
LA - eng
KW - set-valued function; Hukuhara differential; selection of a set-valued map; semimartingale; Stratonovich integral
UR - http://eudml.org/doc/277051
ER -
References
top- [1] J.P. Aubin, Dynamic Economic Theory, A viability Approach, Springer, Verlag, Berlin 1997. Zbl0876.90032
- [2] J.P. Aubin and A. Cellina, Differential Inclusions, Noordhoff, Leyden 1984. Zbl0538.34007
- [3] J.P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser Boston-Basel-Berlin 1990. Zbl0713.49021
- [4] H.T. Banks and M.Q. Jacobs, A diffenertial calculus for set-valued function, J. Math. Anal. Appl. 29 (1970), 246-272. Zbl0191.43302
- [5] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivar. Anal. 7 (1977), 149-182. Zbl0368.60006
- [6] M. Hukuhara, Intégration des applications measurables dont a valeur est un compact convexe, Funkcialaj Ekvacioj 10 (1967), 205-223. Zbl0161.24701
- [7] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ.-PWN, Dordrecht-Boston-London Warszawa 1991. Zbl0731.49001
- [8] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800. Zbl0891.93070
- [9] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Existence and regularity properties, Dynamic Syst. Appl. 12 (3-4) (2003), 405-432. Zbl1063.93047
- [10] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Viability and semimartingale issues, Dynamic Syst. Appl. 12 (3-4) (2003), 433-466. Zbl1064.93042
- [11] V. Lakshmikhantam, T. Gnana Bhaskar and D. Vasundhara, Theory of Set Differential Equations in Metric Space, (preprint) (2004).
- [12] P. Protter, Stochastic Integration and Differential Equations: A New Approach, Springer, New York 1990.
- [13] J. San Martin, One-dimensional Stratonovich differential equations, Ann. Probab. 21 (1) (1993), 509-553. Zbl0773.60049
- [14] E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist. 36 (1965), 1560-1564. Zbl0138.11201
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.