On the optimal continuous experimental design problem

Christos P. Kitsos

Discussiones Mathematicae Probability and Statistics (2011)

  • Volume: 31, Issue: 1-2, page 59-70
  • ISSN: 1509-9423

Abstract

top
The target of this paper is to provide a compact review of the Optimal Experimental Design, the continuous case. Therefore we are referring to the general nonlinear problem in comparison to the linear one.

How to cite

top

Christos P. Kitsos. "On the optimal continuous experimental design problem." Discussiones Mathematicae Probability and Statistics 31.1-2 (2011): 59-70. <http://eudml.org/doc/277059>.

@article{ChristosP2011,
abstract = {The target of this paper is to provide a compact review of the Optimal Experimental Design, the continuous case. Therefore we are referring to the general nonlinear problem in comparison to the linear one.},
author = {Christos P. Kitsos},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {nonlinear experimental design; static; sequential design; nonlinear experimental designs; static designs; sequential designs},
language = {eng},
number = {1-2},
pages = {59-70},
title = {On the optimal continuous experimental design problem},
url = {http://eudml.org/doc/277059},
volume = {31},
year = {2011},
}

TY - JOUR
AU - Christos P. Kitsos
TI - On the optimal continuous experimental design problem
JO - Discussiones Mathematicae Probability and Statistics
PY - 2011
VL - 31
IS - 1-2
SP - 59
EP - 70
AB - The target of this paper is to provide a compact review of the Optimal Experimental Design, the continuous case. Therefore we are referring to the general nonlinear problem in comparison to the linear one.
LA - eng
KW - nonlinear experimental design; static; sequential design; nonlinear experimental designs; static designs; sequential designs
UR - http://eudml.org/doc/277059
ER -

References

top
  1. [1] K.M. Abdelbasit and R.L. Plackett, Experimental design for binary data, JASA 78 (1983) 90-98. doi: 10.1080/01621459.1983.10477936. Zbl0501.62071
  2. [2] A.C. Atkinson and A.N. Donev, Optimum Experimental Designs (Clarendon Press, Oxford, 1992). Zbl0829.62070
  3. [3] D.M. Bates and D.G. Watts, Relative curvature measures of nonlinearity, JRSSB 42 (1980) 1-25. Zbl0455.62028
  4. [4] E.M.L. Beale, Confidence regions in non-linear estimation, JRSSB 22 (1960) 41-88. Zbl0096.13201
  5. [5] G. Elfving, Optimum allocation in linear regression theory, Ann. Math. Stat. 23 (1952) 255-262. doi: 10.1214/aoms/1177729442. 
  6. [6] V.V. Fedorov, Theory of Optimal Experiments (Academic Press, 1972). 
  7. [7] R.A. Fisher, On the mathematical foundation of theoretical statistics, Phil. Trans. Roy. Soc. London (Ser. A) 22 (1922) 309-368. Zbl48.1280.02
  8. [8] I. Ford, C.P. Kitsos and D.M. Titterington, Recent advances in nonlinear experimental design, Technometrics 31 (1989) 49-60. doi: 10.1080/00401706.1989.10488475. Zbl0668.62048
  9. [9] I. Ford, D.M. Titterington and C.F.J. Wu, Inference and sequential design, Biometrika 72 (1985) 545-551. doi: 10.1093/biomet/72.3.545. 
  10. [10] F.E. Fornius, Optimal Design of Experiments for the Quadratic Logistic Model (PhD Thesis, Stockholm University, Sweden, 2008). Zbl1145.62059
  11. [11] D.C Hamilton, D.G. Watts and D.M. Bates, Accounting for intrinsic nonlinearity in nonlinear regression parameter inference regions, Ann. Stat. 10 (1982) 386-393. doi: 10.1214/aos/1176345780. Zbl0537.62045
  12. [12] P.D.H. Hill, D-optimal designs for partially nonlinear regression models, Technometrics 22 (1980) 275-276. doi: 10.1080/00401706.1980.10486145. Zbl0432.62051
  13. [13] P.D.H. Hill, Optimal Experimental Design for Model Discrimination (PhD Thesis, University of Glasgow, UK, 1976). 
  14. [14] S. Karlin and W.J. Studden, Optimal experimental designs, Ann. Math. Stat. 37 (1966) 783-815. doi: 10.1214/aoms/1177699361. Zbl0151.23904
  15. [15] A.I. Khuri, A note on D-optimal designs for partially nonlinear regression models, Technometrics 26 (1984) 59-61. Zbl0531.62067
  16. [16] J. Kiefer, General equivalence theory for optimum designs (approximate theory), Ann. Stat. 2 (1974) 849-879. doi: 10.1214/aos/1176342810. Zbl0291.62093
  17. [17] J. Kiefer and J. Wolfowitz, The equivalence of two extreme problems, Canadian J. Math. 12 (1960) 363-366. doi: 10.4153/CJM-1960-030-4. Zbl0093.15602
  18. [18] C.P. Kitsos, Invariant canonical form for the multiple logistic regression, Math. in Eng. Science and Aerospace (MESA) 2(3) (2011) 267-275. Zbl1227.62051
  19. [19] C.P. Kitsos, Design aspects for the Michaelis-Menten model, Biometrical Letters 38 (2001) 53-66. 
  20. [20] C.P. Kitsos, Fully sequential procedures in nonlinear design problems, Comp. Stat. and Data Analysis 8 (1989) 13-19. doi: 10.1016/0167-9473(89)90061-3. Zbl0702.62074
  21. [21] C.P. Kitsos, Design and Inference in Nonlinear Problems (PhD Thesis, University of Glasgow, UK, 1986). 
  22. [22] C.P. Kitsos and K.G. Kolovos, An optimal calibration design for pH meters, Instrumentation Science and Technology 38(6) (2010) 436-447. doi: 10.1080/10739149.2010.514158. 
  23. [23] E. Lauter, A method of designing experiments for nonlinear models, Math. Operationsforsch U. Stat. 5 (1974) 697-708. 
  24. [24] F. Pukeisheim and D.M. Titterington, General differential and Lagrangian theory for optimal experiment design, Ann. Stat. 11 (1983) 1060-1068. Zbl0592.62066
  25. [25] R. Sibson, Discussion of paper by H.P. Wynn, JRSSB 34 (1972) 181-183. 
  26. [26] S.D. Silvey, Discussion of paper by H.P. Wynn, JRSSB 34 (1972) 174-175. 
  27. [27] S.D. Silvey, Optimal Design (Chapman and Hall, 1980). doi: 10.1007/978-94-009-5912-5. 
  28. [28] S.D. Silvey and D.M. Tittertington, A geometric approach to optimal design theory, Biometrika 60 (1973) 21-32. doi: 10.1093/biomet/60.1.21. 
  29. [29] K. Smith, On the standard deviation of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations, Biometrika 12 (1918) 1-85. 
  30. [30] M. Stone and J.A. Morris (1985), Explanatory studies in non-sequential non-local non-linear design, J. of Statistical Planning and Inference 12 (1985) 1-9. doi: 10.1016/0378-3758(85)90048-5. 
  31. [31] D.M. Titterington, Aspects of optimal design in dynamic systems, Technometrics 22 (1980) 287-299. doi: 10.1080/00401706.1980.10486160. Zbl0452.62062
  32. [32] D.M. Titterington, Optimal design: Some geometrical aspects of D-optimality, Biometrika 62 (1975) 313-320. Zbl0308.62072
  33. [33] L.V. White, An extension to the general equivalence theorem for nonlinear models, Biometrika 60 (1973) 345-348. doi: 10.1093/biomet/60.2.345. Zbl0262.62037
  34. [34] C.F.J. Wu, Asymptotic theory of nonlinear least squares estimates, Ann. Stat. 9 (1981) 501-513. doi: 10.1214/aos/1176345455. 
  35. [35] C.F.J. Wu and H.P. Wynn, The convergence of general step-length algorithms for regular optimum design criteria, Ann. Stat. 6 (1978) 1273-1285. doi: 10.1214/aos/1176344373. Zbl0396.62059
  36. [36] V. Zarikas, V. Gikas and C.P. Kitsos, Evaluation of the optimal design cosinor model for enhancing the potential of robotic theodolite kinematic observation, Measurement 43(10) (2010) 1416-1424. doi: 10.1016/j.measurement.2010.08.006. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.