Inference on the location parameter of exponential populations

Maria de Fátima Brilhante; Sandra Mendonça; Dinis Duarte Pestana; Maria Luísa Rocha

Discussiones Mathematicae Probability and Statistics (2009)

  • Volume: 29, Issue: 2, page 115-129
  • ISSN: 1509-9423

Abstract

top
Studentization and analysis of variance are simple in Gaussian families because X̅ and S² are independent random variables. We exploit the independence of the spacings in exponential populations with location λ and scale δ to develop simple ways of dealing with inference on the location parameter, namely by developing an analysis of scale in the homocedastic independent k-sample problem.

How to cite

top

Maria de Fátima Brilhante, et al. "Inference on the location parameter of exponential populations." Discussiones Mathematicae Probability and Statistics 29.2 (2009): 115-129. <http://eudml.org/doc/277069>.

@article{MariadeFátimaBrilhante2009,
abstract = {Studentization and analysis of variance are simple in Gaussian families because X̅ and S² are independent random variables. We exploit the independence of the spacings in exponential populations with location λ and scale δ to develop simple ways of dealing with inference on the location parameter, namely by developing an analysis of scale in the homocedastic independent k-sample problem.},
author = {Maria de Fátima Brilhante, Sandra Mendonça, Dinis Duarte Pestana, Maria Luísa Rocha},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {studentization; analysis of scale; characterizations; independence of exponential spacings; location-scale families; F-ratio; location-scale families, -ratio.},
language = {eng},
number = {2},
pages = {115-129},
title = {Inference on the location parameter of exponential populations},
url = {http://eudml.org/doc/277069},
volume = {29},
year = {2009},
}

TY - JOUR
AU - Maria de Fátima Brilhante
AU - Sandra Mendonça
AU - Dinis Duarte Pestana
AU - Maria Luísa Rocha
TI - Inference on the location parameter of exponential populations
JO - Discussiones Mathematicae Probability and Statistics
PY - 2009
VL - 29
IS - 2
SP - 115
EP - 129
AB - Studentization and analysis of variance are simple in Gaussian families because X̅ and S² are independent random variables. We exploit the independence of the spacings in exponential populations with location λ and scale δ to develop simple ways of dealing with inference on the location parameter, namely by developing an analysis of scale in the homocedastic independent k-sample problem.
LA - eng
KW - studentization; analysis of scale; characterizations; independence of exponential spacings; location-scale families; F-ratio; location-scale families, -ratio.
UR - http://eudml.org/doc/277069
ER -

References

top
  1. [1] A.A. Aspin, An examination and further developments of a formula arising in the problem of comparing two mean values, Biometrika 35 (1948), 88-97. 
  2. [2] A.A. Aspin, Tables for use in comparisons whose accuracy involves two variances, separately estimated, Biometrika 36 (1949), 290-293. 
  3. [3] M.F. Brilhante and S. Kotz, Infinite divisibility of the spacings of a Kotz-Kozubowski-Podgórski generalized Laplace model, Statistics & Probability Letters 78 (2008), 2433-2436. Zbl1197.60010
  4. [4] M.F. Brilhante, D. Pestana, J. Rocha and S. Velosa, Inferência Estatística Sobre Localização e Escala, Sociedade Portuguesa de Estatística, Ponta Delgada 2001. 
  5. [5] H.A. David and H.N. Nagaraja, Order Statistics, 3rd ed., Wiley, New York 2003. Zbl1053.62060
  6. [6] R.A. Fisher, Statistical Methods for Research Workers, Oliver and Boyd, Edinburgh 1925. Zbl51.0414.08
  7. [7] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, vol. 2, 2nd ed., Wiley, New York 1995. 
  8. [8] G.W. Oehlert, A First Course in Design and Analysis of Experiments, Freeman, New York 2000. 
  9. [9] V. Perlo, On the distribution of `Student's' ratio for samples of three drawn from the rectangular distribution, Biometrika 25 (1933), 203-204. Zbl59.1207.08
  10. [10] D. Pestana, F. Brilhante and J. Rocha, The analysis of variance revisited, in Extreme Values and Additive Laws, Lisboa (1999), 73-77. 
  11. [11] D. Pestana and J. Rocha, Análise de escala - modelo exponencial, in A Estatística e o Futuro e o Futuro da Estatística, Salamandra, Lisboa (1993), 295-303. 
  12. [12] J. Rocha, Localização e Escala em Situações não Clássicas, Dissertação de Doutoramento, Universidade dos Açores, Ponta Delgada 1995. 
  13. [13] J. Rocha, Inference on location parameters - internally studentized statistics, Rev. Estat. (2001), 355-356. 
  14. [14] F.E. Satterthwaite, An approximate distribution of estimates of variance components, Biometrics Bulletin 2 (1946), 110-114. 
  15. [15] H. Scheffé, On solutions of the Behrens-Fisher problem based on the t-distribution, Ann. Math. Stat. 14 (1943), 35-44. Zbl0060.30704
  16. [16] H. Scheffé, A note on the Behrens-Fisher problem, Ann. Math. Stat. 15 (1944), 430-432. Zbl0060.30705
  17. [17] H. Smith, The problem of comparing the results of two experiments with unequal means, J. Council Sci. Industr. Res. 9 (1936), 211-212. 
  18. [18] Student, The probable error of the mean, (Reprinted in E.S. Pearson and J. Wishart, (1958) 'Student's' Collected Papers, Cambridge Univ. Press, Cambridge), Biometrika 6 (1908), 1-25. 
  19. [19] B.L. Welch, The significance of the difference between two means when the population variances are unequal, Biometrika 29 (1938), 350-361. Zbl0018.22602
  20. [20] B.L. Welch, On the comparison of several mean values: an alternative approach, Biometrika 38 (1951), 330-336. Zbl0043.14101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.