# Inference on the location parameter of exponential populations

Maria de Fátima Brilhante; Sandra Mendonça; Dinis Duarte Pestana; Maria Luísa Rocha

Discussiones Mathematicae Probability and Statistics (2009)

- Volume: 29, Issue: 2, page 115-129
- ISSN: 1509-9423

## Access Full Article

top## Abstract

top## How to cite

topMaria de Fátima Brilhante, et al. "Inference on the location parameter of exponential populations." Discussiones Mathematicae Probability and Statistics 29.2 (2009): 115-129. <http://eudml.org/doc/277069>.

@article{MariadeFátimaBrilhante2009,

abstract = {Studentization and analysis of variance are simple in Gaussian families because X̅ and S² are independent random variables. We exploit the independence of the spacings in exponential populations with location λ and scale δ to develop simple ways of dealing with inference on the location parameter, namely by developing an analysis of scale in the homocedastic independent k-sample problem.},

author = {Maria de Fátima Brilhante, Sandra Mendonça, Dinis Duarte Pestana, Maria Luísa Rocha},

journal = {Discussiones Mathematicae Probability and Statistics},

keywords = {studentization; analysis of scale; characterizations; independence of exponential spacings; location-scale families; F-ratio; location-scale families, -ratio.},

language = {eng},

number = {2},

pages = {115-129},

title = {Inference on the location parameter of exponential populations},

url = {http://eudml.org/doc/277069},

volume = {29},

year = {2009},

}

TY - JOUR

AU - Maria de Fátima Brilhante

AU - Sandra Mendonça

AU - Dinis Duarte Pestana

AU - Maria Luísa Rocha

TI - Inference on the location parameter of exponential populations

JO - Discussiones Mathematicae Probability and Statistics

PY - 2009

VL - 29

IS - 2

SP - 115

EP - 129

AB - Studentization and analysis of variance are simple in Gaussian families because X̅ and S² are independent random variables. We exploit the independence of the spacings in exponential populations with location λ and scale δ to develop simple ways of dealing with inference on the location parameter, namely by developing an analysis of scale in the homocedastic independent k-sample problem.

LA - eng

KW - studentization; analysis of scale; characterizations; independence of exponential spacings; location-scale families; F-ratio; location-scale families, -ratio.

UR - http://eudml.org/doc/277069

ER -

## References

top- [1] A.A. Aspin, An examination and further developments of a formula arising in the problem of comparing two mean values, Biometrika 35 (1948), 88-97.
- [2] A.A. Aspin, Tables for use in comparisons whose accuracy involves two variances, separately estimated, Biometrika 36 (1949), 290-293.
- [3] M.F. Brilhante and S. Kotz, Infinite divisibility of the spacings of a Kotz-Kozubowski-Podgórski generalized Laplace model, Statistics & Probability Letters 78 (2008), 2433-2436. Zbl1197.60010
- [4] M.F. Brilhante, D. Pestana, J. Rocha and S. Velosa, Inferência Estatística Sobre Localização e Escala, Sociedade Portuguesa de Estatística, Ponta Delgada 2001.
- [5] H.A. David and H.N. Nagaraja, Order Statistics, 3rd ed., Wiley, New York 2003. Zbl1053.62060
- [6] R.A. Fisher, Statistical Methods for Research Workers, Oliver and Boyd, Edinburgh 1925. Zbl51.0414.08
- [7] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, vol. 2, 2nd ed., Wiley, New York 1995.
- [8] G.W. Oehlert, A First Course in Design and Analysis of Experiments, Freeman, New York 2000.
- [9] V. Perlo, On the distribution of `Student's' ratio for samples of three drawn from the rectangular distribution, Biometrika 25 (1933), 203-204. Zbl59.1207.08
- [10] D. Pestana, F. Brilhante and J. Rocha, The analysis of variance revisited, in Extreme Values and Additive Laws, Lisboa (1999), 73-77.
- [11] D. Pestana and J. Rocha, Análise de escala - modelo exponencial, in A Estatística e o Futuro e o Futuro da Estatística, Salamandra, Lisboa (1993), 295-303.
- [12] J. Rocha, Localização e Escala em Situações não Clássicas, Dissertação de Doutoramento, Universidade dos Açores, Ponta Delgada 1995.
- [13] J. Rocha, Inference on location parameters - internally studentized statistics, Rev. Estat. (2001), 355-356.
- [14] F.E. Satterthwaite, An approximate distribution of estimates of variance components, Biometrics Bulletin 2 (1946), 110-114.
- [15] H. Scheffé, On solutions of the Behrens-Fisher problem based on the t-distribution, Ann. Math. Stat. 14 (1943), 35-44. Zbl0060.30704
- [16] H. Scheffé, A note on the Behrens-Fisher problem, Ann. Math. Stat. 15 (1944), 430-432. Zbl0060.30705
- [17] H. Smith, The problem of comparing the results of two experiments with unequal means, J. Council Sci. Industr. Res. 9 (1936), 211-212.
- [18] Student, The probable error of the mean, (Reprinted in E.S. Pearson and J. Wishart, (1958) 'Student's' Collected Papers, Cambridge Univ. Press, Cambridge), Biometrika 6 (1908), 1-25.
- [19] B.L. Welch, The significance of the difference between two means when the population variances are unequal, Biometrika 29 (1938), 350-361. Zbl0018.22602
- [20] B.L. Welch, On the comparison of several mean values: an alternative approach, Biometrika 38 (1951), 330-336. Zbl0043.14101

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.