Aspects of non-commutative function theory
Concrete Operators (2016)
- Volume: 3, Issue: 1, page 15-24
- ISSN: 2299-3282
Access Full Article
topAbstract
topHow to cite
topJim Agler, and John E. McCarthy. "Aspects of non-commutative function theory." Concrete Operators 3.1 (2016): 15-24. <http://eudml.org/doc/277087>.
@article{JimAgler2016,
abstract = {We discuss non commutative functions, which naturally arise when dealing with functions of more than one matrix variable.},
author = {Jim Agler, John E. McCarthy},
journal = {Concrete Operators},
keywords = {Noncommutative function; Free holomorphic function; noncommutative functions; several matrix variables},
language = {eng},
number = {1},
pages = {15-24},
title = {Aspects of non-commutative function theory},
url = {http://eudml.org/doc/277087},
volume = {3},
year = {2016},
}
TY - JOUR
AU - Jim Agler
AU - John E. McCarthy
TI - Aspects of non-commutative function theory
JO - Concrete Operators
PY - 2016
VL - 3
IS - 1
SP - 15
EP - 24
AB - We discuss non commutative functions, which naturally arise when dealing with functions of more than one matrix variable.
LA - eng
KW - Noncommutative function; Free holomorphic function; noncommutative functions; several matrix variables
UR - http://eudml.org/doc/277087
ER -
References
top- [1] Agler, J., McCarthy, J.E., Non-commutative functional calculus, Journal d’Analyse, to appear. arXiv:1504.07323,
- [2] Agler, J., McCarthy, J.E., Global holomorphic functions in several non-commuting variables, 2015, Canad. J. Math., 67, 2, 241–285, Zbl1311.32001
- [3] Agler, J., McCarthy, J.E., Non-commutative holomorphic functions on operator domains, 2015, European J. Math, 1, 4, 731–745, Zbl1339.46048
- [4] Agler, J., McCarthy, J.E., The implicit function theorem and free algebraic sets, 2016, Trans. Amer. Math. Soc., 368, 5, 3157–3175, Zbl1339.32004
- [5] Alpay, D., Kalyuzhnyi-Verbovetzkii, D. S., Matrix-J-unitary non-commutative rational formal power series, 2006, The state space method generalizations and applications, Oper. Theory Adv. Appl., 161, Birkhäuser, Basel, 49–113,
- [6] Ambrozie, C.-G., Timotin, D., A von Neumann type inequality for certain domains in Cn, 2003, Proc. Amer. Math. Soc., 131, 859–869, Zbl1047.47003
- [7] Ball, J.A., Bolotnikov, V., Realization and interpolation for Schur-Agler class functions on domains with matrix polynomial defining function in Cn, 2004, J. Funct. Anal., 213, 45–87, Zbl1061.47014
- [8] Ball, Joseph A., Groenewald, Gilbert, Malakorn, Tanit, Conservative structured noncommutative multidimensional linear systems, 2006, bookThe state space method generalizations and applications, Oper. Theory Adv. Appl., 161, Birkhäuser, Basel, 179–223, Zbl1110.47066
- [9] Boyd, Stephen, El Ghaoui, Laurent, Feron, Eric, Balakrishnan, Venkataramanan, Linear matrix inequalities in system and control theory, SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, 15, 0-89871-334-X, http://dx.doi.org/10.1137/1.9781611970777, Zbl0816.93004
- [10] Cimpric, Jakob, Helton, J. William, McCullough, Scott, Nelson, Christopher, A noncommutative real nullstellensatz corresponds to a noncommutative real ideal: algorithms, 2013, 0024-6115, Proc. Lond. Math. Soc. (3), 106, 5, 1060–1086, http://dx.doi.org.libproxy.wustl.edu/10.1112/plms/pds060, Zbl1270.14029
- [11] Dineen, Seán, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999, 1-85233-158-5, http://dx.doi.org/10.1007/978-1-4471-0869-6,
- [12] Helton, J. William, “Positive” noncommutative polynomials are sums of squares, 2002, 0003-486X, Ann. of Math. (2), 156, 2, 675–694, http://dx.doi.org/10.2307/3597203,
- [13] Helton, J. William, Klep, Igor, McCullough, Scott, Analytic mappings between noncommutative pencil balls, 2011, J. Math. Anal. Appl., 376, 2, 407–428, Zbl1210.47039
- [14] Helton, J. William, Klep, Igor, McCullough, Scott, Proper analytic free maps, 2011, J. Funct. Anal., 260, 5, 1476–1490, Zbl1215.47011
- [15] Helton, J. William, Klep, Igor, McCullough, Scott, Convexity and semidefinite programming in dimension-free matrix unknowns, 2012, bookHandbook on semidefinite, conic and polynomial optimization, Internat. Ser. Oper. Res. Management Sci., 166, Springer, New York, 377–405, http://dx.doi.org/10.1007/978-1-4614-0769-0_13, Zbl1334.90103
- [16] Helton, J. William, Klep, Igor, McCullough, Scott, Free analysis, convexity and LMI domains, 2012, bookOperator theory: Advances and applications, vol. 41, Springer, Basel, 195–219, Zbl1280.46043
- [17] Helton, J. William, Klep, Igor, McCullough, Scott, Slinglend, Nick, Noncommutative ball maps, 2009, 0022-1236, J. Funct. Anal., 257, 1, 47–87, http://dx.doi.org.libproxy.wustl.edu/10.1016/j.jfa.2009.03.008, Zbl1179.47012
- [18] Helton, J. William, McCullough, Scott, Every convex free basic semi-algebraic set has an LMI representation, 2012, Ann. of Math. (2), 176, 2, 979–1013, Zbl1260.14011
- [19] Helton, J. William, McCullough, Scott, Putinar, Mihai, Vinnikov, Victor, Convex matrix inequalities versus linear matrix inequalities, 2009, 0018-9286, IEEE Trans. Automat. Control, 54, 5, 952–964, http://dx.doi.org/10.1109/TAC.2009.2017087,
- [20] Helton, J. William, McCullough, Scott A., A Positivstellensatz for non-commutative polynomials, 2004, 0002-9947, Trans. Amer. Math. Soc., 356, 9, 3721–3737 (electronic), http://dx.doi.org.libproxy.wustl.edu/10.1090/S0002-9947-04-03433-6,
- [21] Kaliuzhnyi-Verbovetskyi, Dmitry S., Vinnikov, Victor, Foundations of free non-commutative function theory, AMS, Providence, 2014, Zbl1312.46003
- [22] McCarthy, J.E., Timoney, R., Nc automorphisms of nc-bounded domains, Proc. Royal Soc. Edinburgh, to appear,
- [23] Muhly, Paul S., Solel, Baruch, Tensorial function theory: from Berezin transforms to Taylor’s Taylor series and back, 2013, 0378- 620X, Integral Equations Operator Theory, 76, 4, 463–508, http://dx.doi.org.libproxy.wustl.edu/10.1007/s00020-013-2062-4, Zbl1291.46043
- [24] Pascoe, J. E., The inverse function theorem and the Jacobian conjecture for free analysis, 2014, 0025-5874, Math. Z., 278, 3-4, 987–994, http://dx.doi.org/10.1007/s00209-014-1342-2,
- [25] Pascoe, J.E., Tully-Doyle, R., Free Pick functions: representations, asymptotic behavior and matrix monotonicity in several noncommuting variables, arXiv:1309.1791,
- [26] Popescu, Gelu, Free holomorphic functions on the unit ball of B.H/n, 2006, J. Funct. Anal., 241, 1, 268–333, Zbl1112.47004
- [27] Popescu, Gelu, Free holomorphic functions and interpolation, 2008, Math. Ann., 342, 1, 1–30, Zbl1146.47010
- [28] Popescu, Gelu, Free holomorphic automorphisms of the unit ball of B.H/n, 2010, J. Reine Angew. Math., 638, 119–168,
- [29] Popescu, Gelu, Free biholomorphic classification of noncommutative domains, 2011, Int. Math. Res. Not. IMRN, 4, 784–850, Zbl1235.47011
- [30] Putinar, M., Positive polynomials on compact semi-algebraic sets, 1993, 42, 969–984, Zbl0796.12002
- [31] Schmüdgen, Konrad, The K-moment problem for compact semi-algebraic sets, 1991, 0025-5831, Math. Ann., 289, 2, 203–206, http://dx.doi.org/10.1007/BF01446568,
- [32] Sylvester, J., Sur l’équations en matrices px = xq, 1884, C.R. Acad. Sci. Paris, 99, 67–71, Zbl16.0108.03
- [33] Taylor, J.L., The analytic functional calculus for several commuting operators, 1970, Acta Math., 125, 1–38, Zbl0233.47025
- [34] Taylor, J.L., A joint spectrum for several commuting operators, 1970, J. Funct. Anal., 6, 172–191, Zbl0233.47024
- [35] Taylor, J.L., A general framework for a multi-operator functional calculus, 1972, 0001-8708, Advances in Math., 9, 183–252,
- [36] Taylor, J.L., Functions of several non-commuting variables, 1973, Bull. Amer. Math. Soc., 79, 1–34, Zbl0257.46055
- [37] Voiculescu, Dan, Free analysis questions. I. Duality transform for the coalgebra of @XWB, 2004, Int. Math. Res. Not., 16, 793–822, Zbl1084.46053
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.