Dislocation measure of the fragmentation of a general Lévy tree

Guillaume Voisin

ESAIM: Probability and Statistics (2011)

  • Volume: 15, page 372-389
  • ISSN: 1292-8100

Abstract

top
Given a general critical or sub-critical branching mechanism and its associated Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson snake. It defines a fragmentation process on the tree. We compute the family of dislocation measures associated with this fragmentation. This work generalizes the work made for a Brownian tree [R. Abraham and L. Serlet, Elect. J. Probab. 7 (2002) 1–15] and for a tree without Brownian part [R. Abraham and J.-F. Delmas, Probab. Th. Rel. Fiel 141 (2008) 113–154].

How to cite

top

Voisin, Guillaume. "Dislocation measure of the fragmentation of a general Lévy tree." ESAIM: Probability and Statistics 15 (2011): 372-389. <http://eudml.org/doc/277161>.

@article{Voisin2011,
abstract = {Given a general critical or sub-critical branching mechanism and its associated Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson snake. It defines a fragmentation process on the tree. We compute the family of dislocation measures associated with this fragmentation. This work generalizes the work made for a Brownian tree [R. Abraham and L. Serlet, Elect. J. Probab. 7 (2002) 1–15] and for a tree without Brownian part [R. Abraham and J.-F. Delmas, Probab. Th. Rel. Fiel 141 (2008) 113–154].},
author = {Voisin, Guillaume},
journal = {ESAIM: Probability and Statistics},
keywords = {fragmentation; Lévy CRT},
language = {eng},
pages = {372-389},
publisher = {EDP-Sciences},
title = {Dislocation measure of the fragmentation of a general Lévy tree},
url = {http://eudml.org/doc/277161},
volume = {15},
year = {2011},
}

TY - JOUR
AU - Voisin, Guillaume
TI - Dislocation measure of the fragmentation of a general Lévy tree
JO - ESAIM: Probability and Statistics
PY - 2011
PB - EDP-Sciences
VL - 15
SP - 372
EP - 389
AB - Given a general critical or sub-critical branching mechanism and its associated Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson snake. It defines a fragmentation process on the tree. We compute the family of dislocation measures associated with this fragmentation. This work generalizes the work made for a Brownian tree [R. Abraham and L. Serlet, Elect. J. Probab. 7 (2002) 1–15] and for a tree without Brownian part [R. Abraham and J.-F. Delmas, Probab. Th. Rel. Fiel 141 (2008) 113–154].
LA - eng
KW - fragmentation; Lévy CRT
UR - http://eudml.org/doc/277161
ER -

References

top
  1. [1] R. Abraham and J.-F. Delmas, Fragmentation associated with Lévy processes using snake. Probab. Th. Rel. Fiel141 (2008) 113–154. Zbl1142.60048MR2372967
  2. [2] R. Abraham, J.-F. Delmas and G. Voisin, Pruning a Lévy random continuum tree. preprint Zbl1231.60073
  3. [3] R. Abraham and L. Serlet, Poisson snake and fragmentation. Elect. J. Probab.7 (2002) 1–15. Zbl1015.60046MR1943890
  4. [4] D. Aldous, The continuum random tree II: an overview. Proc. Durham Symp. Stochastic Analysis. Cambridge univ. press edition (1990) 23–70. Zbl0791.60008MR1166406
  5. [5] D. Aldous, The continuum random tree I. Ann. Probab.19 (1991) 1–28. Zbl0722.60013MR1085326
  6. [6] D. Aldous, The continuum random tree III. Ann. Probab.21 (1993) 248–289. Zbl0791.60009MR1207226
  7. [7] D. Aldous and J. Pitman, Inhomogeneous continuum trees and the entrance boundary of the additive coalescent. Probab. Th. Rel. Fields118 (2000) 455–482. Zbl0969.60015MR1808372
  8. [8] D. Aldous and J. Piman, The standard additive coalescent. Ann. Probab.26 (1998) 1703–1726. Zbl0936.60064MR1675063
  9. [9] J. Bertoin, Lévy processes. Cambridge University Press, Cambridge (1996). Zbl0938.60005MR1406564
  10. [10] J. Bertoin, Random fragmentation and coagulation processes, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge 102 (2006). Zbl1107.60002MR2253162
  11. [11] D.A. Dawson, Measure-valued Markov processes, in École d'été de Probabilités de Saint-Flour 1991, Lect. Notes Math. Springer Verlag, Berlin 1541 (1993) 1–260. Zbl0799.60080MR1242575
  12. [12] J.-F. Delmas, Height process for super-critical continuous state branching process. Markov Proc. Rel. Fields.14 (2008) 309–326. Zbl1149.60057MR2437534
  13. [13] T. Duquesne and J.-F. Le Gall, Random trees, Lévy processes and spatial branching processes 281. Astérisque (2002). Zbl1037.60074
  14. [14] T. Duquesne and J.-F. Le Gall, Probabilistic and fractal aspects of Lévy trees, Probab. Th. Rel. Fields131 (2005) 553–603. Zbl1070.60076MR2147221
  15. [15] T. Duquesne and M. Winkel, Growth of Lévy trees. Probab. Th. Rel. Fields139 (2007) 313–371. Zbl1126.60068MR2322700
  16. [16] M. Jirina, Stochastic branching processes with continuous state space. Czech. Math. J.83 (1958) 292–312. Zbl0168.38602MR101554
  17. [17] J. Lamperti, The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie Verw. Gebiete7 (1967) 271–288. Zbl0154.42603MR217893
  18. [18] J.-F. Le Gall, Spatial branching processes, random snakes and partial differential equations. Birkhäuser Verlag, Basel (1999). Zbl0938.60003MR1714707
  19. [19] J.-F. Le Gall and Y. Le Jan, Branching processes in Lévy processes: the exploration process. Ann. Probab.26 (1998) 213–252. Zbl0948.60071MR1617047
  20. [20] K.R. Parthasarathy, Probability measures on metric spaces. Probability and Mathematical Statistics 3, Academic, New York (1967). Zbl0153.19101MR226684

NotesEmbed ?

top

You must be logged in to post comments.