Dislocation measure of the fragmentation of a general Lévy tree

Guillaume Voisin

ESAIM: Probability and Statistics (2011)

  • Volume: 15, page 372-389
  • ISSN: 1292-8100

Abstract

top
Given a general critical or sub-critical branching mechanism and its associated Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson snake. It defines a fragmentation process on the tree. We compute the family of dislocation measures associated with this fragmentation. This work generalizes the work made for a Brownian tree [R. Abraham and L. Serlet, Elect. J. Probab. 7 (2002) 1–15] and for a tree without Brownian part [R. Abraham and J.-F. Delmas, Probab. Th. Rel. Fiel 141 (2008) 113–154].

How to cite

top

Voisin, Guillaume. "Dislocation measure of the fragmentation of a general Lévy tree." ESAIM: Probability and Statistics 15 (2011): 372-389. <http://eudml.org/doc/277161>.

@article{Voisin2011,
abstract = {Given a general critical or sub-critical branching mechanism and its associated Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson snake. It defines a fragmentation process on the tree. We compute the family of dislocation measures associated with this fragmentation. This work generalizes the work made for a Brownian tree [R. Abraham and L. Serlet, Elect. J. Probab. 7 (2002) 1–15] and for a tree without Brownian part [R. Abraham and J.-F. Delmas, Probab. Th. Rel. Fiel 141 (2008) 113–154].},
author = {Voisin, Guillaume},
journal = {ESAIM: Probability and Statistics},
keywords = {fragmentation; Lévy CRT},
language = {eng},
pages = {372-389},
publisher = {EDP-Sciences},
title = {Dislocation measure of the fragmentation of a general Lévy tree},
url = {http://eudml.org/doc/277161},
volume = {15},
year = {2011},
}

TY - JOUR
AU - Voisin, Guillaume
TI - Dislocation measure of the fragmentation of a general Lévy tree
JO - ESAIM: Probability and Statistics
PY - 2011
PB - EDP-Sciences
VL - 15
SP - 372
EP - 389
AB - Given a general critical or sub-critical branching mechanism and its associated Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson snake. It defines a fragmentation process on the tree. We compute the family of dislocation measures associated with this fragmentation. This work generalizes the work made for a Brownian tree [R. Abraham and L. Serlet, Elect. J. Probab. 7 (2002) 1–15] and for a tree without Brownian part [R. Abraham and J.-F. Delmas, Probab. Th. Rel. Fiel 141 (2008) 113–154].
LA - eng
KW - fragmentation; Lévy CRT
UR - http://eudml.org/doc/277161
ER -

References

top
  1. [1] R. Abraham and J.-F. Delmas, Fragmentation associated with Lévy processes using snake. Probab. Th. Rel. Fiel141 (2008) 113–154. Zbl1142.60048MR2372967
  2. [2] R. Abraham, J.-F. Delmas and G. Voisin, Pruning a Lévy random continuum tree. preprint Zbl1231.60073
  3. [3] R. Abraham and L. Serlet, Poisson snake and fragmentation. Elect. J. Probab.7 (2002) 1–15. Zbl1015.60046MR1943890
  4. [4] D. Aldous, The continuum random tree II: an overview. Proc. Durham Symp. Stochastic Analysis. Cambridge univ. press edition (1990) 23–70. Zbl0791.60008MR1166406
  5. [5] D. Aldous, The continuum random tree I. Ann. Probab.19 (1991) 1–28. Zbl0722.60013MR1085326
  6. [6] D. Aldous, The continuum random tree III. Ann. Probab.21 (1993) 248–289. Zbl0791.60009MR1207226
  7. [7] D. Aldous and J. Pitman, Inhomogeneous continuum trees and the entrance boundary of the additive coalescent. Probab. Th. Rel. Fields118 (2000) 455–482. Zbl0969.60015MR1808372
  8. [8] D. Aldous and J. Piman, The standard additive coalescent. Ann. Probab.26 (1998) 1703–1726. Zbl0936.60064MR1675063
  9. [9] J. Bertoin, Lévy processes. Cambridge University Press, Cambridge (1996). Zbl0938.60005MR1406564
  10. [10] J. Bertoin, Random fragmentation and coagulation processes, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge 102 (2006). Zbl1107.60002MR2253162
  11. [11] D.A. Dawson, Measure-valued Markov processes, in École d'été de Probabilités de Saint-Flour 1991, Lect. Notes Math. Springer Verlag, Berlin 1541 (1993) 1–260. Zbl0799.60080MR1242575
  12. [12] J.-F. Delmas, Height process for super-critical continuous state branching process. Markov Proc. Rel. Fields.14 (2008) 309–326. Zbl1149.60057MR2437534
  13. [13] T. Duquesne and J.-F. Le Gall, Random trees, Lévy processes and spatial branching processes 281. Astérisque (2002). Zbl1037.60074
  14. [14] T. Duquesne and J.-F. Le Gall, Probabilistic and fractal aspects of Lévy trees, Probab. Th. Rel. Fields131 (2005) 553–603. Zbl1070.60076MR2147221
  15. [15] T. Duquesne and M. Winkel, Growth of Lévy trees. Probab. Th. Rel. Fields139 (2007) 313–371. Zbl1126.60068MR2322700
  16. [16] M. Jirina, Stochastic branching processes with continuous state space. Czech. Math. J.83 (1958) 292–312. Zbl0168.38602MR101554
  17. [17] J. Lamperti, The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie Verw. Gebiete7 (1967) 271–288. Zbl0154.42603MR217893
  18. [18] J.-F. Le Gall, Spatial branching processes, random snakes and partial differential equations. Birkhäuser Verlag, Basel (1999). Zbl0938.60003MR1714707
  19. [19] J.-F. Le Gall and Y. Le Jan, Branching processes in Lévy processes: the exploration process. Ann. Probab.26 (1998) 213–252. Zbl0948.60071MR1617047
  20. [20] K.R. Parthasarathy, Probability measures on metric spaces. Probability and Mathematical Statistics 3, Academic, New York (1967). Zbl0153.19101MR226684

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.