# Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional

Vincent Millot; Adriano Pisante

Journal of the European Mathematical Society (2010)

- Volume: 012, Issue: 5, page 1069-1096
- ISSN: 1435-9855

## Access Full Article

top## Abstract

top## How to cite

topMillot, Vincent, and Pisante, Adriano. "Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional." Journal of the European Mathematical Society 012.5 (2010): 1069-1096. <http://eudml.org/doc/277195>.

@article{Millot2010,

abstract = {We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps in $H^1_\{\text\{loc\}\}(\mathbb \{R\}^3;\mathbb \{R\}^3)$ satisfying a natural energy bound. Up to translations and rotations,such solutions of the Ginzburg–Landau system are given by an explicit solution equivariant under
the action of the orthogonal group.},

author = {Millot, Vincent, Pisante, Adriano},

journal = {Journal of the European Mathematical Society},

keywords = {Ginzburg–Landau equation; harmonic maps; local minimizers; Ginzburg-Landau equation; harmonic maps; local minimizers},

language = {eng},

number = {5},

pages = {1069-1096},

publisher = {European Mathematical Society Publishing House},

title = {Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional},

url = {http://eudml.org/doc/277195},

volume = {012},

year = {2010},

}

TY - JOUR

AU - Millot, Vincent

AU - Pisante, Adriano

TI - Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional

JO - Journal of the European Mathematical Society

PY - 2010

PB - European Mathematical Society Publishing House

VL - 012

IS - 5

SP - 1069

EP - 1096

AB - We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps in $H^1_{\text{loc}}(\mathbb {R}^3;\mathbb {R}^3)$ satisfying a natural energy bound. Up to translations and rotations,such solutions of the Ginzburg–Landau system are given by an explicit solution equivariant under
the action of the orthogonal group.

LA - eng

KW - Ginzburg–Landau equation; harmonic maps; local minimizers; Ginzburg-Landau equation; harmonic maps; local minimizers

UR - http://eudml.org/doc/277195

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.