Millot, Vincent, and Pisante, Adriano. "Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional." Journal of the European Mathematical Society 012.5 (2010): 1069-1096. <http://eudml.org/doc/277195>.
@article{Millot2010,
abstract = {We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps in $H^1_\{\text\{loc\}\}(\mathbb \{R\}^3;\mathbb \{R\}^3)$ satisfying a natural energy bound. Up to translations and rotations,such solutions of the Ginzburg–Landau system are given by an explicit solution equivariant under
the action of the orthogonal group.},
author = {Millot, Vincent, Pisante, Adriano},
journal = {Journal of the European Mathematical Society},
keywords = {Ginzburg–Landau equation; harmonic maps; local minimizers; Ginzburg-Landau equation; harmonic maps; local minimizers},
language = {eng},
number = {5},
pages = {1069-1096},
publisher = {European Mathematical Society Publishing House},
title = {Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional},
url = {http://eudml.org/doc/277195},
volume = {012},
year = {2010},
}
TY - JOUR
AU - Millot, Vincent
AU - Pisante, Adriano
TI - Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional
JO - Journal of the European Mathematical Society
PY - 2010
PB - European Mathematical Society Publishing House
VL - 012
IS - 5
SP - 1069
EP - 1096
AB - We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps in $H^1_{\text{loc}}(\mathbb {R}^3;\mathbb {R}^3)$ satisfying a natural energy bound. Up to translations and rotations,such solutions of the Ginzburg–Landau system are given by an explicit solution equivariant under
the action of the orthogonal group.
LA - eng
KW - Ginzburg–Landau equation; harmonic maps; local minimizers; Ginzburg-Landau equation; harmonic maps; local minimizers
UR - http://eudml.org/doc/277195
ER -